{"title":"Neural Correlate-Based E-Learning Validation and Classification Using Convolutional and Long Short-Term Memory Networks","authors":"Dharmendra Pathak, R. Kashyap","doi":"10.18280/ts.400414","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has precipitated an unprecedented surge in the proliferation of online E-learning platforms, designed to cater to a wide array of subjects across all age groups. However, a paucity of these platforms adopts a learner-centric approach or validates user learning, underscoring the need for effective E-learning validation and personalized learning recommendations. This paper addresses these challenges by implementing an innovative approach that leverages real-time electroencephalogram (EEG) signals collected from learners, who don neuro headsets while partaking in online courses. These EEG signals are subsequently classified using Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) deep learning models, with the intent of discerning the efficacy of the E-learning process. The proposed models have yielded promising classification accuracies of 68% and 97% for the CNN and LSTM models, respectively, demonstrating their rapidity and precision in classifying E-learning EEG signals. Thus, these models hold substantial potential for application in similar E-learning validation scenarios. Furthermore, this study introduces an automated framework designed to track the learning curve of users and furnish valuable recommendations for E-learning materials. The presented approach, therefore, not only validates the E-learning process but also aids in optimizing the learning experiences on E-learning platforms.","PeriodicalId":49430,"journal":{"name":"Traitement Du Signal","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traitement Du Signal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18280/ts.400414","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic has precipitated an unprecedented surge in the proliferation of online E-learning platforms, designed to cater to a wide array of subjects across all age groups. However, a paucity of these platforms adopts a learner-centric approach or validates user learning, underscoring the need for effective E-learning validation and personalized learning recommendations. This paper addresses these challenges by implementing an innovative approach that leverages real-time electroencephalogram (EEG) signals collected from learners, who don neuro headsets while partaking in online courses. These EEG signals are subsequently classified using Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) deep learning models, with the intent of discerning the efficacy of the E-learning process. The proposed models have yielded promising classification accuracies of 68% and 97% for the CNN and LSTM models, respectively, demonstrating their rapidity and precision in classifying E-learning EEG signals. Thus, these models hold substantial potential for application in similar E-learning validation scenarios. Furthermore, this study introduces an automated framework designed to track the learning curve of users and furnish valuable recommendations for E-learning materials. The presented approach, therefore, not only validates the E-learning process but also aids in optimizing the learning experiences on E-learning platforms.
期刊介绍:
The TS provides rapid dissemination of original research in the field of signal processing, imaging and visioning. Since its founding in 1984, the journal has published articles that present original research results of a fundamental, methodological or applied nature. The editorial board welcomes articles on the latest and most promising results of academic research, including both theoretical results and case studies.
The TS welcomes original research papers, technical notes and review articles on various disciplines, including but not limited to:
Signal processing
Imaging
Visioning
Control
Filtering
Compression
Data transmission
Noise reduction
Deconvolution
Prediction
Identification
Classification.