A method for removal of reflection artifact in computational fluid dynamic simulation of supersonic jet noise

T. Park, HyunShig Joo, I. Jang, Seung-Hoon Kang, W. Ohm, Sang-Joon Shin, Jeongwon Park
{"title":"A method for removal of reflection artifact in computational fluid dynamic simulation of supersonic jet noise","authors":"T. Park, HyunShig Joo, I. Jang, Seung-Hoon Kang, W. Ohm, Sang-Joon Shin, Jeongwon Park","doi":"10.7776/ASK.2020.39.4.364","DOIUrl":null,"url":null,"abstract":"Rocket noise generated from the exhaust plume produces the enormous acoustic loading, which adversely affects the integrity of the electronic components and payload (satellite) at liftoff. The prediction of rocket noise consists of two steps: the supersonic jet exhaust is simulated by a method of the Computational Fluid Dynamics (CFD), and an acoustic transport method, such as the Helmholtz-Kirchhoff integral, is applied to predict the noise field. One of the difficulties in the CFD step is to remove the boundary reflection artifacts from the finite computation boundary. In general, artificial damping, known as a sponge layer, is added nearby the boundary to attenuate these reflected waves but this layer demands a large computational area and an optimization procedure of related parameters. In this paper, a cost-efficient way to separate the reflected waves based on the two microphone method is firstly introduced and applied to the computation result of a laboratory-scale supersonic jet noise without sponge layers.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"39 1","pages":"364-370"},"PeriodicalIF":0.2000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2020.39.4.364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rocket noise generated from the exhaust plume produces the enormous acoustic loading, which adversely affects the integrity of the electronic components and payload (satellite) at liftoff. The prediction of rocket noise consists of two steps: the supersonic jet exhaust is simulated by a method of the Computational Fluid Dynamics (CFD), and an acoustic transport method, such as the Helmholtz-Kirchhoff integral, is applied to predict the noise field. One of the difficulties in the CFD step is to remove the boundary reflection artifacts from the finite computation boundary. In general, artificial damping, known as a sponge layer, is added nearby the boundary to attenuate these reflected waves but this layer demands a large computational area and an optimization procedure of related parameters. In this paper, a cost-efficient way to separate the reflected waves based on the two microphone method is firstly introduced and applied to the computation result of a laboratory-scale supersonic jet noise without sponge layers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超音速射流噪声计算流体动力学模拟中反射伪影的消除方法
排气羽流产生的火箭噪音产生了巨大的声学负载,这对发射时电子部件和有效载荷(卫星)的完整性产生了不利影响。火箭噪声的预测包括两个步骤:利用计算流体动力学(CFD)方法模拟超音速喷气发动机排气,并应用亥姆霍兹-基尔霍夫积分等声学输运方法预测噪声场。CFD步骤中的困难之一是从有限计算边界中去除边界反射伪影。通常,在边界附近添加被称为海绵层的人工阻尼,以衰减这些反射波,但该层需要大的计算面积和相关参数的优化程序。本文首次介绍了一种基于双传声器方法的高效分离反射波的方法,并将其应用于实验室规模的无海绵层超声速射流噪声的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
50.00%
发文量
1
期刊最新文献
A quantitative analysis of synthetic aperture sonar image distortion according to sonar platform motion parameters Measurements of mid-frequency transmission loss in shallow waters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model An explorative study on the perceived emotion of music: according to cognitive styles of music listening A robust data association gate method of non-linear target tracking in dense cluttered environment Performance analysis of weakly-supervised sound event detection system based on the mean-teacher convolutional recurrent neural network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1