{"title":"A projective approach to nonnegative matrix factorization","authors":"Patrick Groetzner","doi":"10.13001/ela.2021.5067","DOIUrl":null,"url":null,"abstract":"In data science and machine learning, the method of nonnegative matrix factorization (NMF) is a powerful tool that enjoys great popularity. Depending on the concrete application, there exist several subclasses each of which performs a NMF under certain constraints. Consider a given square matrix $A$. The symmetric NMF aims for a nonnegative low-rank approximation $A\\approx XX^T$ to $A$, where $X$ is entrywise nonnegative and of given order. Considering a rectangular input matrix $A$, the general NMF again aims for a nonnegative low-rank approximation to $A$ which is now of the type $A\\approx XY$ for entrywise nonnegative matrices $X,Y$ of given order. In this paper, we introduce a new heuristic method to tackle the exact nonnegative matrix factorization problem (of type $A=XY$), based on projection approaches to solve a certain feasibility problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.5067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In data science and machine learning, the method of nonnegative matrix factorization (NMF) is a powerful tool that enjoys great popularity. Depending on the concrete application, there exist several subclasses each of which performs a NMF under certain constraints. Consider a given square matrix $A$. The symmetric NMF aims for a nonnegative low-rank approximation $A\approx XX^T$ to $A$, where $X$ is entrywise nonnegative and of given order. Considering a rectangular input matrix $A$, the general NMF again aims for a nonnegative low-rank approximation to $A$ which is now of the type $A\approx XY$ for entrywise nonnegative matrices $X,Y$ of given order. In this paper, we introduce a new heuristic method to tackle the exact nonnegative matrix factorization problem (of type $A=XY$), based on projection approaches to solve a certain feasibility problem.
在数据科学和机器学习中,非负矩阵分解(NMF)方法是一个非常受欢迎的强大工具。根据具体的应用,存在几个子类,每个子类在特定的约束下执行NMF。考虑一个给定的方阵a。对称NMF的目标是一个非负的低秩近似$ a \约XX^T$到$ a $,其中$X$是非负的并且是给定顺序的。考虑一个矩形输入矩阵$ a $,一般的NMF再次以$ a $的非负低秩近似为目标,对于给定顺序的入口非负矩阵$X,Y$,它现在的类型为$ a \约XY$。本文引入了一种新的启发式方法来解决(类型为$ a =XY$)的精确非负矩阵分解问题,该方法基于求解某可行性问题的投影方法。