{"title":"FVF-AKA: A Formal Verification Framework of AKA Protocols for Multi-server IoT","authors":"Yuan Fei, Huibiao Zhu, Jiaqi Yin","doi":"10.1145/3599731","DOIUrl":null,"url":null,"abstract":"As IoT in multi-server environment increases resources utilization, more and more problems of IoT authentication and key agreement are revealed. Authentication and Key Agreement (AKA) protocol plays an important role in solving these problems. Many AKA protocols have been proposed, and some of them support their own verifications. However, there lacks a unifying verification framework for multi-server IoT. In this paper, we propose a formal verification framework of AKA protocols for multi-server IoT (FVF-AKA). It supports the construction of CSP models for the AKA protocol, the implementation of the CSP models in PAT with C#, and the verification of formal models. With the help of C#, many complex functions in AKA protocol can be implemented. We also design an algorithm to support automatic conversion from CSP model to PAT model. FVF-AKA can verify four fundamental properties (deadlock freedom, entity legitimacy, timeout delay, and session key consistency). It also supports the verification of security properties for the AKA protocol suffering from four different attacks (relay attacks, denial of service attacks, server spoofing attacks, and session key attacks). Our approach can be applied to most AKA protocols for multi-server IoT generally. By applying FVF-AKA to two AKA protocols, we can verify whether they satisfy the fundamental properties and analyze their security properties in vulnerable environments. Our work would help to analyze the AKA protocol for multi-server IoT and provide the foundation for the analysis of enhancing its security and robustness.","PeriodicalId":50432,"journal":{"name":"Formal Aspects of Computing","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal Aspects of Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3599731","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
As IoT in multi-server environment increases resources utilization, more and more problems of IoT authentication and key agreement are revealed. Authentication and Key Agreement (AKA) protocol plays an important role in solving these problems. Many AKA protocols have been proposed, and some of them support their own verifications. However, there lacks a unifying verification framework for multi-server IoT. In this paper, we propose a formal verification framework of AKA protocols for multi-server IoT (FVF-AKA). It supports the construction of CSP models for the AKA protocol, the implementation of the CSP models in PAT with C#, and the verification of formal models. With the help of C#, many complex functions in AKA protocol can be implemented. We also design an algorithm to support automatic conversion from CSP model to PAT model. FVF-AKA can verify four fundamental properties (deadlock freedom, entity legitimacy, timeout delay, and session key consistency). It also supports the verification of security properties for the AKA protocol suffering from four different attacks (relay attacks, denial of service attacks, server spoofing attacks, and session key attacks). Our approach can be applied to most AKA protocols for multi-server IoT generally. By applying FVF-AKA to two AKA protocols, we can verify whether they satisfy the fundamental properties and analyze their security properties in vulnerable environments. Our work would help to analyze the AKA protocol for multi-server IoT and provide the foundation for the analysis of enhancing its security and robustness.
期刊介绍:
This journal aims to publish contributions at the junction of theory and practice. The objective is to disseminate applicable research. Thus new theoretical contributions are welcome where they are motivated by potential application; applications of existing formalisms are of interest if they show something novel about the approach or application.
In particular, the scope of Formal Aspects of Computing includes:
well-founded notations for the description of systems;
verifiable design methods;
elucidation of fundamental computational concepts;
approaches to fault-tolerant design;
theorem-proving support;
state-exploration tools;
formal underpinning of widely used notations and methods;
formal approaches to requirements analysis.