Piezoelectric materials and systems for tissue engineering and implantable energy harvesting devices for biomedical applications

IF 16.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY International Materials Reviews Pub Date : 2021-11-20 DOI:10.1080/09506608.2021.1988194
Vlad Jarkov, S. Allan, C. Bowen, H. Khanbareh
{"title":"Piezoelectric materials and systems for tissue engineering and implantable energy harvesting devices for biomedical applications","authors":"Vlad Jarkov, S. Allan, C. Bowen, H. Khanbareh","doi":"10.1080/09506608.2021.1988194","DOIUrl":null,"url":null,"abstract":"ABSTRACT Recently, the development of smart materials and the study of their properties has provided an innovative approach to the field of tissue engineering. Piezoelectrics, which are able to generate electric charge in response to mechanical stress or strain have been utilised in the stimulation of electrophysiologically responsive cells , including those found in bone, muscle, and the central and peripheral nervous systems. This area of study has experienced tremendous growth in the past decade in terms of both the array of piezoelectric materials and analytical methods by which they are evaluated in relation to specific tissue types. This review provides a critical and comprehensive overview of the most recent advances in this emerging field. Furthermore, it will extend the scope to examine the most recent developments in piezoelectric biomedical devices that extract energy from physiological processes to either power biomedical implants or act as biomedical sensors .","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"67 1","pages":"683 - 733"},"PeriodicalIF":16.8000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2021.1988194","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 16

Abstract

ABSTRACT Recently, the development of smart materials and the study of their properties has provided an innovative approach to the field of tissue engineering. Piezoelectrics, which are able to generate electric charge in response to mechanical stress or strain have been utilised in the stimulation of electrophysiologically responsive cells , including those found in bone, muscle, and the central and peripheral nervous systems. This area of study has experienced tremendous growth in the past decade in terms of both the array of piezoelectric materials and analytical methods by which they are evaluated in relation to specific tissue types. This review provides a critical and comprehensive overview of the most recent advances in this emerging field. Furthermore, it will extend the scope to examine the most recent developments in piezoelectric biomedical devices that extract energy from physiological processes to either power biomedical implants or act as biomedical sensors .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于组织工程的压电材料和系统以及用于生物医学应用的植入式能量收集装置
近年来,智能材料的发展及其性能的研究为组织工程领域提供了一条创新的途径。压电材料能够对机械应力或应变产生电荷,已被用于刺激电生理反应细胞,包括骨骼、肌肉、中枢和周围神经系统中的细胞。这一研究领域在过去十年中经历了巨大的增长,无论是压电材料阵列还是分析方法,它们都是根据特定组织类型进行评估的。这篇综述对这一新兴领域的最新进展进行了批判性和全面的概述。此外,它将扩展范围,以检查压电生物医学设备的最新发展,从生理过程中提取能量,为生物医学植入物提供动力或作为生物医学传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Materials Reviews
International Materials Reviews 工程技术-材料科学:综合
CiteScore
28.50
自引率
0.00%
发文量
21
审稿时长
6 months
期刊介绍: International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content. Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information. Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.
期刊最新文献
Methods and models for fibre–matrix interface characterisation in fibre-reinforced polymers: a review Feedstock preparation, microstructures and mechanical properties for laser-based additive manufacturing of steel matrix composites Statistically equivalent representative volume elements (SERVE) for material behaviour analysis and multiscale modelling Ceramic-based electromagnetic wave absorbing materials and concepts towards lightweight, flexibility and thermal resistance Glass-contact refractory of the nuclear waste vitrification melters in the United States: a review of corrosion data and melter life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1