Mesh-Free Interpolant Observables for Continuous Data Assimilation

A. Biswas, K. Brown, V. Martinez
{"title":"Mesh-Free Interpolant Observables for Continuous Data Assimilation","authors":"A. Biswas, K. Brown, V. Martinez","doi":"10.4208/aam.OA-2022-0006","DOIUrl":null,"url":null,"abstract":". This paper is dedicated to the expansion of the framework of general interpolant observables introduced by Azouani, Olson, and Titi for continuous data assimilation of nonlinear partial differential equations. The main feature of this expanded framework is its mesh-free aspect, which allows the observational data itself to dictate the subdivision of the domain via partition of unity in the spirit of the so-called Partition of Unity Method by Babuska and Melenk. As an application of this framework, we consider a nudging-based scheme for data assimilation applied to the context of the two-dimensional Navier-Stokes equations as a paradigmatic example and establish convergence to the reference solution in all higher-order Sobolev topologies in a periodic, mean-free setting. The convergence analysis also makes use of absorbing ball bounds in higher-order Sobolev norms, for which explicit bounds appear to be available in the literature only up to H 2 ; such bounds are additionally proved for all integer levels of Sobolev regularity above H 2 .","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学年刊:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4208/aam.OA-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. This paper is dedicated to the expansion of the framework of general interpolant observables introduced by Azouani, Olson, and Titi for continuous data assimilation of nonlinear partial differential equations. The main feature of this expanded framework is its mesh-free aspect, which allows the observational data itself to dictate the subdivision of the domain via partition of unity in the spirit of the so-called Partition of Unity Method by Babuska and Melenk. As an application of this framework, we consider a nudging-based scheme for data assimilation applied to the context of the two-dimensional Navier-Stokes equations as a paradigmatic example and establish convergence to the reference solution in all higher-order Sobolev topologies in a periodic, mean-free setting. The convergence analysis also makes use of absorbing ball bounds in higher-order Sobolev norms, for which explicit bounds appear to be available in the literature only up to H 2 ; such bounds are additionally proved for all integer levels of Sobolev regularity above H 2 .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续数据同化的无网格插值观测
.本文致力于扩展由Azouani、Olson和Titi引入的用于非线性偏微分方程的连续数据同化的一般插入可观测性框架。这个扩展框架的主要特征是其无网格方面,这使得观测数据本身能够按照Babuska和Melenk所谓的统一划分方法的精神,通过统一划分来决定域的细分。作为该框架的一个应用,我们将应用于二维Navier-Stokes方程的基于轻推的数据同化方案视为一个示例,并在周期性、无均值的环境中,在所有高阶Sobolev拓扑中建立到参考解的收敛性。收敛性分析还利用了高阶Sobolev范数中的吸收球界,对于该范数,显式界在文献中似乎仅在H2之前可用;对于H2以上的Sobolev正则性的所有整数级,进一步证明了这种界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
544
期刊最新文献
Error Analysis of the Nonconforming $P_1$ Finite Element Method to the Sequential Regularization Formulation for Unsteady Navier-Stokes Equations Fast High Order and Energy Dissipative Schemes with Variable Time Steps for Time-Fractional Molecular Beam Epitaxial Growth Model A New Locking-Free Virtual Element Method for Linear Elasticity Problems A Linearized Adaptive Dynamic Diffusion Finite Element Method for Convection-Diffusion-Reaction Equations Improved Analysis of PINNs: Alleviate the CoD for Compositional Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1