Processing of nationwide topographic data for ensuring consistent river network representation

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Hydrology X Pub Date : 2021-12-01 DOI:10.1016/j.hydroa.2021.100106
Michael H. Wimmer , Markus Hollaus , Günter Blöschl , Andreas Buttinger-Kreuzhuber , Jürgen Komma , Jürgen Waser , Norbert Pfeifer
{"title":"Processing of nationwide topographic data for ensuring consistent river network representation","authors":"Michael H. Wimmer ,&nbsp;Markus Hollaus ,&nbsp;Günter Blöschl ,&nbsp;Andreas Buttinger-Kreuzhuber ,&nbsp;Jürgen Komma ,&nbsp;Jürgen Waser ,&nbsp;Norbert Pfeifer","doi":"10.1016/j.hydroa.2021.100106","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing river floods and infrastructure development in many parts of the world have created an urgent need for accurate high-resolution flood hazard mapping for more efficient flood risk management. Mapping accuracy hinges on the quality of the underlying Digital Terrain Model (DTM) and other spatial datasets. This article presents a processing strategy to ensure consistent adaption of countrywide spatial datasets to the requirements of hydraulic modelling. The suggested methods are automatized to a large extent and include (i) automatic fitting of river axis positions to the DTM, (ii) detection of culverts and obstacles in the river channel (iii) Smooth elimination of obstacles by interpolation along the river axes (iv) geometric detection of water-land borders and the top edge of embankments for (v) integration of the submerged river bed geometry into the DTM. The processing chain is applied to a river network (33880 <em>km</em>) and a DTM from Airborne Laser Scanning (ALS) with 1 <em>m</em> spatial resolution covering the entire territory of Austria (<span><math><mrow><mo>∼</mo></mrow></math></span>84000 <span><math><mrow><msup><mrow><mi>km</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>). Thus, countrywide consistency of data and methods is achieved along with high local relevance. Semi-automatic validation and extensive manual checks demonstrate that processing significantly improves the DTM with respect to topographic and hydraulic consistency. However, some open issues of automatic processing remain, e.g. in case of long underground river reaches.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"13 ","pages":"Article 100106"},"PeriodicalIF":3.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915521000341/pdfft?md5=cf2c032525545b12d9f8dbfc16b073ab&pid=1-s2.0-S2589915521000341-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915521000341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Increasing river floods and infrastructure development in many parts of the world have created an urgent need for accurate high-resolution flood hazard mapping for more efficient flood risk management. Mapping accuracy hinges on the quality of the underlying Digital Terrain Model (DTM) and other spatial datasets. This article presents a processing strategy to ensure consistent adaption of countrywide spatial datasets to the requirements of hydraulic modelling. The suggested methods are automatized to a large extent and include (i) automatic fitting of river axis positions to the DTM, (ii) detection of culverts and obstacles in the river channel (iii) Smooth elimination of obstacles by interpolation along the river axes (iv) geometric detection of water-land borders and the top edge of embankments for (v) integration of the submerged river bed geometry into the DTM. The processing chain is applied to a river network (33880 km) and a DTM from Airborne Laser Scanning (ALS) with 1 m spatial resolution covering the entire territory of Austria (84000 km2). Thus, countrywide consistency of data and methods is achieved along with high local relevance. Semi-automatic validation and extensive manual checks demonstrate that processing significantly improves the DTM with respect to topographic and hydraulic consistency. However, some open issues of automatic processing remain, e.g. in case of long underground river reaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
处理全国地形数据以确保河网表现的一致性
世界许多地区的河流洪水和基础设施建设日益增加,迫切需要精确的高分辨率洪水灾害地图,以便更有效地进行洪水风险管理。制图精度取决于底层数字地形模型(DTM)和其他空间数据集的质量。本文提出了一种处理策略,以确保全国空间数据集一致适应水力建模的要求。建议的方法在很大程度上是自动化的,包括(i)将河流轴线位置自动拟合到DTM中,(ii)检测河道中的涵洞和障碍物,(iii)通过沿河流轴线插值平滑消除障碍物,(iv)对水陆边界和堤防顶部边缘进行几何检测,(v)将淹没河床几何形状整合到DTM中。该处理链应用于河网(33880公里)和机载激光扫描(ALS)的DTM,其空间分辨率为1米,覆盖整个奥地利领土(约84000平方公里)。因此,实现了全国范围内数据和方法的一致性以及高度的地方相关性。半自动验证和大量的人工检查表明,处理显著提高了DTM在地形和液压一致性方面的表现。然而,自动处理仍然存在一些悬而未决的问题,例如在地下河长河段的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
期刊最新文献
Revisiting model complexity: Space-time correction of high dimensional variable sets in climate model simulations Effects of model complexity on karst catchment runoff modeling for flood warning systems Quantifying the economic value of a national hydrometric network for households Private sensors and crowdsourced rainfall data: Accuracy and potential for modelling pluvial flooding in urban areas of Oslo, Norway A combined data assimilation and deep learning approach for continuous spatio-temporal SWE reconstruction from sparse ground tracks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1