양성자 조사가 316 스테인리스강의 미세조직과 표면산화 특성에 미치는 영향

IF 0.8 Q4 ELECTROCHEMISTRY Corrosion Science and Technology-Korea Pub Date : 2021-06-30 DOI:10.14773/CST.2021.20.3.158
임연수, 김동진, 황성식, 최민재, 조성환
{"title":"양성자 조사가 316 스테인리스강의 미세조직과 표면산화 특성에 미치는 영향","authors":"임연수, 김동진, 황성식, 최민재, 조성환","doi":"10.14773/CST.2021.20.3.158","DOIUrl":null,"url":null,"abstract":"Austenitic 316 stainless steel was irradiated with protons accelerated by an energy of 2 MeV at 360 ℃, the various defects induced by this proton irradiation were characterized with microscopic equipment. In our observations irradiation defects such as dislocations and micro-voids were clearly revealed. The typical irradiation defects observed differed according to depth, indicating the evolution of irradiation defects follows the characteristics of radiation damage profiles that depend on depth. Surface oxidation tests were conducted under the simulated primary water conditions of a pressurized water reactor (PWR) to understand the role irradiation defects play in surface oxidation behavior and also to investigate the resultant irradiation assisted stress corrosion cracking (IASCC) susceptibility that occurs after exposure to PWR primary water. We found that Cr and Fe became depleted while Ni was enriched at the grain boundary beneath the surface oxidation layer both in the non-irradiated and proton-irradiated specimens. However, the degree of Cr/Fe depletion and Ni enrichment was much higher in the proton-irradiated sample than in the non-irradiated one owing to radiation-induced segregation and the irradiation defects. The microstructural and microchemical changes induced by proton irradiation all appear to significantly increase the susceptibility of austenitic 316 stainless steel to IASCC.","PeriodicalId":43201,"journal":{"name":"Corrosion Science and Technology-Korea","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science and Technology-Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14773/CST.2021.20.3.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Austenitic 316 stainless steel was irradiated with protons accelerated by an energy of 2 MeV at 360 ℃, the various defects induced by this proton irradiation were characterized with microscopic equipment. In our observations irradiation defects such as dislocations and micro-voids were clearly revealed. The typical irradiation defects observed differed according to depth, indicating the evolution of irradiation defects follows the characteristics of radiation damage profiles that depend on depth. Surface oxidation tests were conducted under the simulated primary water conditions of a pressurized water reactor (PWR) to understand the role irradiation defects play in surface oxidation behavior and also to investigate the resultant irradiation assisted stress corrosion cracking (IASCC) susceptibility that occurs after exposure to PWR primary water. We found that Cr and Fe became depleted while Ni was enriched at the grain boundary beneath the surface oxidation layer both in the non-irradiated and proton-irradiated specimens. However, the degree of Cr/Fe depletion and Ni enrichment was much higher in the proton-irradiated sample than in the non-irradiated one owing to radiation-induced segregation and the irradiation defects. The microstructural and microchemical changes induced by proton irradiation all appear to significantly increase the susceptibility of austenitic 316 stainless steel to IASCC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子照射对316不锈钢微组织和表面氧化特性的影响
用能量为2MeV的质子在360℃下对奥氏体316不锈钢进行辐照,用显微设备对质子辐照产生的各种缺陷进行了表征。在我们的观察中,辐照缺陷,如位错和微空隙被清楚地揭示出来。观察到的典型辐照缺陷因深度不同而不同,表明辐照缺陷的演变遵循取决于深度的辐照损伤轮廓的特征。在压水堆(PWR)的模拟一次水条件下进行了表面氧化试验,以了解辐照缺陷在表面氧化行为中的作用,并研究暴露于压水堆一次水后产生的辐照辅助应力腐蚀开裂(IASCC)敏感性。我们发现,在未辐照和质子辐照的样品中,Cr和Fe都变得贫化,而Ni在表面氧化层下方的晶界富集。然而,由于辐射引起的偏析和辐射缺陷,质子辐照样品中的Cr/Fe贫化和Ni富集程度远高于未辐照样品。质子辐照引起的微观结构和微化学变化似乎都显著增加了奥氏体316不锈钢对IASCC的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
66.70%
发文量
0
期刊最新文献
Effect of ε-carbide (Fe 2.4 C) on Corrosion and Hydrogen Diffusion Behaviors of Automotive Ultrahigh-Strength Steel Sheet, 초고강도급 자동차용 강재 내 ε-carbide (Fe 2.4 C)가 부식 및 수소확산거동에 미치는 영향 원자로 내부구조물 균열개시 민감도에 미치는 영향인자 고찰 Failure Evaluation Plan of a Reactor Internal Components of a Decommissioned Plant Electrochemical Characteristics of Synthesized Nb 2 O 5 -Li 3 VO 4 Composites as Li Storage Materials Application of High Performance Coatings for Service Life Extension of Steel Bridge Coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1