{"title":"Some recent trends in embeddings of time series and dynamic networks","authors":"Dag Tjøstheim, Martin Jullum, Anders Løland","doi":"10.1111/jtsa.12677","DOIUrl":null,"url":null,"abstract":"<p>We give a review of some recent developments in embeddings of time series and dynamic networks. We start out with traditional principal components and then look at extensions to dynamic factor models for time series. Unlike principal components for time series, the literature on time-varying nonlinear embedding is rather sparse. The most promising approaches in the literature is neural network based, and has recently performed well in forecasting competitions. We also touch on different forms of dynamics in topological data analysis (TDA). The last part of the article deals with embedding of dynamic networks, where we believe there is a gap between available theory and the behavior of most real world networks. We illustrate our review with two simulated examples. Throughout the review, we highlight differences between the static and dynamic case, and point to several open problems in the dynamic case.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12677","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
We give a review of some recent developments in embeddings of time series and dynamic networks. We start out with traditional principal components and then look at extensions to dynamic factor models for time series. Unlike principal components for time series, the literature on time-varying nonlinear embedding is rather sparse. The most promising approaches in the literature is neural network based, and has recently performed well in forecasting competitions. We also touch on different forms of dynamics in topological data analysis (TDA). The last part of the article deals with embedding of dynamic networks, where we believe there is a gap between available theory and the behavior of most real world networks. We illustrate our review with two simulated examples. Throughout the review, we highlight differences between the static and dynamic case, and point to several open problems in the dynamic case.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.