CAPABILITIES OF HYPERSPECTRAL REMOTE SENSING DATA TO DETECT SOIL SALINITY

Abdelrahman Medhat Saleh, M. Abd-Elwahed, Y. Metwally, S. Arafat
{"title":"CAPABILITIES OF HYPERSPECTRAL REMOTE SENSING DATA TO DETECT SOIL SALINITY","authors":"Abdelrahman Medhat Saleh, M. Abd-Elwahed, Y. Metwally, S. Arafat","doi":"10.21608/ajs.2021.87863.1402","DOIUrl":null,"url":null,"abstract":": The objectives of the current study were to investigate the oppor-tunity of estimating soil salinity from hyperspectral data and identifying the most informative spectral zones for estimation. Electrical conductivity (EC) measurements of ninety topsoil samples (0–30 cm) collected fromToshka, Egypt, were used as data set. Analytical spectral device was employed to collect the reflectance spectral signatures of soil samples. Both linear regression and HSD Tukey’s analyses displayed that the SWIR1 and SWIR2 zones are the most suitable for soil salinity prediction while, blue, green and NIR were the wickedest. Moreover, EC estimation was better in case of lower soil salinity (0-2 dS m -1 ) than higher levels (8<dS m -1 ). Partial-least-squares-regression (ΡLSR) was employed to establish soil salinity prediction model using the training set of soil samples (n=75). The PLSR model was set up using the most informative wave bands (SWIR1 and SWIR2). The result showed that PLSR linear model gave a precise prediction of soil salinity (R 2 = 0.93).","PeriodicalId":8366,"journal":{"name":"Arab Universities Journal of Agricultural Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Universities Journal of Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ajs.2021.87863.1402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: The objectives of the current study were to investigate the oppor-tunity of estimating soil salinity from hyperspectral data and identifying the most informative spectral zones for estimation. Electrical conductivity (EC) measurements of ninety topsoil samples (0–30 cm) collected fromToshka, Egypt, were used as data set. Analytical spectral device was employed to collect the reflectance spectral signatures of soil samples. Both linear regression and HSD Tukey’s analyses displayed that the SWIR1 and SWIR2 zones are the most suitable for soil salinity prediction while, blue, green and NIR were the wickedest. Moreover, EC estimation was better in case of lower soil salinity (0-2 dS m -1 ) than higher levels (8
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光谱遥感数据探测土壤盐度的能力
当前研究的目的是研究从高光谱数据中估计土壤盐度的机会,并确定用于估计的最有信息的光谱区。从埃及toshka收集的90个表层土壤样品(0-30 cm)的电导率(EC)测量结果作为数据集。采用分析光谱装置采集土壤样品的反射光谱特征。线性回归和HSD Tukey的分析均表明,SWIR1和SWIR2区最适合预测土壤盐分,而蓝色、绿色和近红外区最不适合预测土壤盐分。土壤含盐量较低(0 ~ 2 dS m -1)时,EC的估算效果优于土壤含盐量较高(8
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1