Mechanics of moving defects in growing sheets: 3-d, small deformation theory

Amit Acharya, Shankar C. Venkataramani
{"title":"Mechanics of moving defects in growing sheets: 3-d, small deformation theory","authors":"Amit Acharya,&nbsp;Shankar C. Venkataramani","doi":"10.1186/s41313-020-00018-w","DOIUrl":null,"url":null,"abstract":"<p>Growth and other dynamical processes in soft materials can create novel types of mesoscopic defects including discontinuities for the second and higher derivatives of the deformation, and terminating defects for these discontinuities. These higher-order defects move “easily\", and can thus confer a great degree of flexibility to the material. We develop a general continuum mechanical framework from which we can derive the dynamics of higher order defects in a thermodynamically consistent manner. We illustrate our framework by obtaining the explicit dynamical equations for the next higher order defects in an elastic body beyond dislocations, phase boundaries, and disclinations, namely, surfaces of inflection and branch lines.</p>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-020-00018-w","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-020-00018-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Growth and other dynamical processes in soft materials can create novel types of mesoscopic defects including discontinuities for the second and higher derivatives of the deformation, and terminating defects for these discontinuities. These higher-order defects move “easily", and can thus confer a great degree of flexibility to the material. We develop a general continuum mechanical framework from which we can derive the dynamics of higher order defects in a thermodynamically consistent manner. We illustrate our framework by obtaining the explicit dynamical equations for the next higher order defects in an elastic body beyond dislocations, phase boundaries, and disclinations, namely, surfaces of inflection and branch lines.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生长片中运动缺陷的力学:三维小变形理论
软质材料中的生长和其他动力学过程可以产生新型的介观缺陷,包括变形的二阶导数和更高阶导数的不连续,以及这些不连续的终止缺陷。这些高阶缺陷“容易”移动,因此可以赋予材料很大程度的灵活性。我们开发了一个通用的连续力学框架,从中我们可以以热力学一致的方式推导出高阶缺陷的动力学。我们通过获得弹性体中下一个高阶缺陷的显式动力学方程来说明我们的框架,这些缺陷超出了位错,相边界和斜位,即弯曲和分支线的表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory. The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.
期刊最新文献
An informatics method for inferring the hardening exponent of plasticity in polycrystalline metals from surface strain measurements Multiscale modelling of precipitation hardening: a review Junction formation rates, residence times, and the rate of plastic flow in FCC metals A model for physical dislocation transmission through grain boundaries and its implementation in a discrete dislocation dynamics tool Dislocation-precipitate interactions in crystals: from the BKS model to collective dislocation dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1