Localizing Jammer in an Indoor Environment by Estimating Signal Strength and Kalman Filter

Waleed Aldosari, M. Zohdy
{"title":"Localizing Jammer in an Indoor Environment by Estimating Signal Strength and Kalman Filter","authors":"Waleed Aldosari, M. Zohdy","doi":"10.4236/WET.2018.92003","DOIUrl":null,"url":null,"abstract":"Localizing a jammer in an indoor environment in wireless sensor networks becomes a significant research problem due to the ease of blocking the communication between legitimate nodes. An adversary may emit radio frequency to prevent the transmission between nodes. In this paper, we propose detecting the position of the jammer indoor by using the received signal strength and Kalman filter (KF) to reduce the noise due to the multipath signal caused by obstacles in the indoor environment. We compare our work to the Linear Prediction Algorithm (LP) and Centroid Localization Algorithm (CL). We observed that the Kalman filter has better results when estimating the distance compared to other algorithms.","PeriodicalId":68067,"journal":{"name":"无线工程与技术(英文)","volume":"09 1","pages":"20-33"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线工程与技术(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/WET.2018.92003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Localizing a jammer in an indoor environment in wireless sensor networks becomes a significant research problem due to the ease of blocking the communication between legitimate nodes. An adversary may emit radio frequency to prevent the transmission between nodes. In this paper, we propose detecting the position of the jammer indoor by using the received signal strength and Kalman filter (KF) to reduce the noise due to the multipath signal caused by obstacles in the indoor environment. We compare our work to the Linear Prediction Algorithm (LP) and Centroid Localization Algorithm (CL). We observed that the Kalman filter has better results when estimating the distance compared to other algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信号强度估计和卡尔曼滤波的室内干扰机定位
在无线传感器网络中,室内环境中干扰器的定位由于容易阻碍合法节点之间的通信而成为一个重要的研究问题。攻击者可以发射无线电频率以阻止节点之间的传输。本文提出利用接收到的信号强度和卡尔曼滤波(KF)来检测室内干扰机的位置,以降低室内环境中障碍物引起的多径信号噪声。我们将我们的工作与线性预测算法(LP)和质心定位算法(CL)进行了比较。我们观察到卡尔曼滤波在估计距离时比其他算法有更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
118
期刊最新文献
On the Effects of Driven Element L/D Ratio and Length in VHF-SHF Yagi-Uda Arrays Enhancing Security in Correlated Nakagami-m Fading Cellular Network Using SC and SSC Diversity Combining Non-Uniform Pitch Helical Resonators for Dual-Passband Filter Design Design of Intelligent Water-Saving Irrigation System Based on Internet of Things Six-Element Yagi Array Designs Using Central Force Optimization with Pseudo Random Negative Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1