Voltammetric Determination of Uric Acid in Clinical Serum Samples Using DMF Modified Screen Printed Carbon Electrodes

IF 2.3 Q3 ELECTROCHEMISTRY International journal of electrochemistry Pub Date : 2019-02-03 DOI:10.1155/2019/6318515
Melaku Metto, Samrawit Eramias, Bekele Gelagay, Alemayehu P Washe
{"title":"Voltammetric Determination of Uric Acid in Clinical Serum Samples Using DMF Modified Screen Printed Carbon Electrodes","authors":"Melaku Metto, Samrawit Eramias, Bekele Gelagay, Alemayehu P Washe","doi":"10.1155/2019/6318515","DOIUrl":null,"url":null,"abstract":"Screen printed carbon electrodes (SPCEs) provide attractive opportunity for sensitive and selective determination target analytes in clinical samples. The aim of the current work was to develop SPCEs based sensor for the determination of uric acid in clinical serum samples. The electrodes were pretreated by soaking in N,N-dimethylformamide for 5 minutes followed by drying in an oven at 100°C for 20 mins. The effect of surface pretreatment was characterized using cyclic voltammetry. The current response of uric acid detection was improved by a factor of 3.5 in differential pulse voltammetric measurement compared to unmodified electrode. Under the optimized conditions, the sensor displayed two dynamic linear ranges 5-100 μM and 100-500 μM with correlation coefficient, R2, values of 0.98782 and 0.97876, respectively. The limit of detection and limit of quantification calculated using the dynamic linear range 5-100 μM were 1.9 x 10−7 M and 6.33 x 10−7 M, respectively. The developed sensor displayed well separated and discerned peaks for UA in presence of the potential interferent (ascorbic acid and citric acid). The electrode was successfully applied for the detection of very low level of UA in clinical serum samples in a phosphate buffer solution (pH = 7). The proposed sensor showed a very high reproducibility and repeatability with the relative standard deviation of 0.9%. In conclusion, a simple and low cost sensor based on SPCEs is developed for sensitive and selective detection of uric acid in clinical samples.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6318515","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/6318515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 12

Abstract

Screen printed carbon electrodes (SPCEs) provide attractive opportunity for sensitive and selective determination target analytes in clinical samples. The aim of the current work was to develop SPCEs based sensor for the determination of uric acid in clinical serum samples. The electrodes were pretreated by soaking in N,N-dimethylformamide for 5 minutes followed by drying in an oven at 100°C for 20 mins. The effect of surface pretreatment was characterized using cyclic voltammetry. The current response of uric acid detection was improved by a factor of 3.5 in differential pulse voltammetric measurement compared to unmodified electrode. Under the optimized conditions, the sensor displayed two dynamic linear ranges 5-100 μM and 100-500 μM with correlation coefficient, R2, values of 0.98782 and 0.97876, respectively. The limit of detection and limit of quantification calculated using the dynamic linear range 5-100 μM were 1.9 x 10−7 M and 6.33 x 10−7 M, respectively. The developed sensor displayed well separated and discerned peaks for UA in presence of the potential interferent (ascorbic acid and citric acid). The electrode was successfully applied for the detection of very low level of UA in clinical serum samples in a phosphate buffer solution (pH = 7). The proposed sensor showed a very high reproducibility and repeatability with the relative standard deviation of 0.9%. In conclusion, a simple and low cost sensor based on SPCEs is developed for sensitive and selective detection of uric acid in clinical samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用DMF修饰的丝网印刷碳电极伏安法测定临床血清样品中的尿酸
丝网印刷碳电极(SPCE)为临床样品中敏感和选择性测定目标分析物提供了有吸引力的机会。目前工作的目的是开发基于SPCEs的传感器,用于测定临床血清样品中的尿酸。电极通过在N,N-二甲基甲酰胺中浸泡5分钟进行预处理,然后在100°C的烘箱中干燥20分钟。用循环伏安法表征了表面预处理的效果。在微分脉冲伏安测量中,与未修饰的电极相比,尿酸检测的电流响应提高了3.5倍。在优化条件下,传感器显示出5-100μM和100-500μM两个动态线性范围,相关系数R2分别为0.98782和0.97876。使用5-100μM的动态线性范围计算的检测限和定量限分别为1.9 x 10−7M和6.33 x 10−7M。在存在潜在干扰物质(抗坏血酸和柠檬酸)的情况下,所开发的传感器显示出良好分离和辨别的UA峰。该电极成功应用于在磷酸盐缓冲溶液(pH=7)中检测临床血清样品中非常低水平的UA。所提出的传感器显示出非常高的再现性和重复性,相对标准偏差为0.9%。总之,开发了一种基于SPCEs的简单低成本传感器,用于灵敏和选择性地检测临床样品中的尿酸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
7 weeks
期刊最新文献
Effect of Surface Composition on Electrochemical Oxidation Reaction of Carbon Monoxide and Ethanol of PtxRh1−x Solid Solution Electrodes Development and Characterization of a New Solid Polymer Electrolyte for Supercapacitor Device Size-Dependent Chlorinated Nitrogen-Doped Carbon Nanotubes: Their Use as Electrochemical Detectors for Catechol and Resorcinol Enabling the Electrochemical Performance of Maricite-NaMnPO4 and Maricite-NaFePO4 Cathode Materials in Sodium-Ion Batteries Electrooxidation and Development of a Highly Sensitive Electrochemical Probe for Trace Determination of the Steroid 11-Desoxycorticosterone Drug Residues in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1