V. Bakhmutov, I. Poliachenko, S. Cherkes, V. V. Shcherbakova, D. Hlavatskyi
{"title":"Palаeomagnetism of the Vendian traps of Volyn, southwestern margin of the East European platform. P. 1: palаeomagnetic directions and poles","authors":"V. Bakhmutov, I. Poliachenko, S. Cherkes, V. V. Shcherbakova, D. Hlavatskyi","doi":"10.24028/gzh.v43i6.251555","DOIUrl":null,"url":null,"abstract":"In Earth’s geological evolution the Vendian is significant because: 1) it preceded the «Cambrian Evolutionary explosion» when the multicellular organisms became suddenly much more diverse; 2) it is associated with the global tectonic and palaeogeographic restructuring of supercontinents, a change in geomagnetic field generation and other global processes affecting different layers of the Earth. At the same time, recent publications indicate an extremely irregular behavior of the geomagnetic field in the Vendian, which significantly differs from the recent regime of the geomagnetic field generation. New information on the configuration and magnitude of the geomagnetic field is crucial for understanding the reasons that can cause different modes of geodynamo. The article describes the new results of palaeomagnetic studies of the Volyn traps — basalts and tuffs of the Volyn series with ages about 560—580 My. The determined palaeodirections and palaeopoles are in good agreement with the previously published data of other authors and substantially complement them. The ChRM-component of «low-titanium» basalts was isolated in high-temperature (>500 °C) and characterized as primary. The same samples were used for palaeointensity determinations which showed the extremely low values of the geomagnetic field — an order of magnitude lower than the present one. The ChRM-component of «high-titanium» basalts was yielded in the temperature range of 200—400 °C. No results were obtained from palaeointensity experiments, and the complex nature of remanent magnetization remains unclear. The new data are compared with the palaeo-magnetic data of the Vendian—Early Cambrian poles of the East European Platform determined by other authors. To test the hypothesis of an anomalous Ediacaran magnetic field characterized by a low dipole moment and a high inversion frequency, more data are necessary. These data can be obtained from the studies of a stratigraphically more complete section of the Volyn traps opened by boreholes. These results will be presented in the next part of the article.","PeriodicalId":54141,"journal":{"name":"Geofizicheskiy Zhurnal-Geophysical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizicheskiy Zhurnal-Geophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24028/gzh.v43i6.251555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
In Earth’s geological evolution the Vendian is significant because: 1) it preceded the «Cambrian Evolutionary explosion» when the multicellular organisms became suddenly much more diverse; 2) it is associated with the global tectonic and palaeogeographic restructuring of supercontinents, a change in geomagnetic field generation and other global processes affecting different layers of the Earth. At the same time, recent publications indicate an extremely irregular behavior of the geomagnetic field in the Vendian, which significantly differs from the recent regime of the geomagnetic field generation. New information on the configuration and magnitude of the geomagnetic field is crucial for understanding the reasons that can cause different modes of geodynamo. The article describes the new results of palaeomagnetic studies of the Volyn traps — basalts and tuffs of the Volyn series with ages about 560—580 My. The determined palaeodirections and palaeopoles are in good agreement with the previously published data of other authors and substantially complement them. The ChRM-component of «low-titanium» basalts was isolated in high-temperature (>500 °C) and characterized as primary. The same samples were used for palaeointensity determinations which showed the extremely low values of the geomagnetic field — an order of magnitude lower than the present one. The ChRM-component of «high-titanium» basalts was yielded in the temperature range of 200—400 °C. No results were obtained from palaeointensity experiments, and the complex nature of remanent magnetization remains unclear. The new data are compared with the palaeo-magnetic data of the Vendian—Early Cambrian poles of the East European Platform determined by other authors. To test the hypothesis of an anomalous Ediacaran magnetic field characterized by a low dipole moment and a high inversion frequency, more data are necessary. These data can be obtained from the studies of a stratigraphically more complete section of the Volyn traps opened by boreholes. These results will be presented in the next part of the article.