Reference trajectory-based coverage analysis method in three-dimensional space for multi-radio integrated navigation systems

J. Son, S. Oh, D. Hwang
{"title":"Reference trajectory-based coverage analysis method in three-dimensional space for multi-radio integrated navigation systems","authors":"J. Son, S. Oh, D. Hwang","doi":"10.1080/19479832.2020.1813814","DOIUrl":null,"url":null,"abstract":"ABSTRACT GPS can be integrated with other radio navigation systems when GPS signals are not available due to navigation warfare. Before deploying navigation signal sources, the coverage analysis can be performed in order to check a required navigation performance is satisfied in 2-dimensional space. Usually, the coverage analysis is performed for the area in which a vehicle is operated. When an air vehicle is operated and the method in 2-dimensional is directly extended, the computational load can be excessively heavy. In this paper, a reference trajectory-based coverage analysis method for multi-radio integrated navigation systems is proposed using CRLB in order to alleviate computational burden in 3-dimensional space. The performance of the proposed method is evaluated for 2 trajectories and 6 arrangements of navigation signal sources. The results show that the proposed method can be used in the coverage analysis in 3-dimensional space.","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":"11 1","pages":"287 - 307"},"PeriodicalIF":1.8000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19479832.2020.1813814","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2020.1813814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT GPS can be integrated with other radio navigation systems when GPS signals are not available due to navigation warfare. Before deploying navigation signal sources, the coverage analysis can be performed in order to check a required navigation performance is satisfied in 2-dimensional space. Usually, the coverage analysis is performed for the area in which a vehicle is operated. When an air vehicle is operated and the method in 2-dimensional is directly extended, the computational load can be excessively heavy. In this paper, a reference trajectory-based coverage analysis method for multi-radio integrated navigation systems is proposed using CRLB in order to alleviate computational burden in 3-dimensional space. The performance of the proposed method is evaluated for 2 trajectories and 6 arrangements of navigation signal sources. The results show that the proposed method can be used in the coverage analysis in 3-dimensional space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参考轨迹的多无线电组合导航系统三维空间覆盖分析方法
当导航战导致GPS信号不可用时,GPS可以与其他无线电导航系统集成。在部署导航信号源之前,可以进行覆盖分析,以检查在二维空间中是否满足所需的导航性能。通常,覆盖分析是针对车辆运行的区域进行的。当飞行器运行时,将该方法直接扩展到二维空间,计算量会过大。为了减轻三维空间的计算负担,提出了一种基于参考轨迹的多无线电组合导航覆盖分析方法。对2种轨迹和6种导航信号源布置进行了性能评价。结果表明,该方法可用于三维空间的覆盖分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
10
期刊介绍: International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).
期刊最新文献
CNN-based plant disease recognition using colour space models Building classification extraction from remote sensing images combining hyperpixel and maximum interclass variance PolSAR image classification based on TCN deep learning: a case study of greater Cairo Spatial enhancement of Landsat-9 land surface temperature imagery by Fourier transformation-based panchromatic fusion Underwater image contrast enhancement through an intensity-randomised approach incorporating a swarm intelligence technique with unsupervised dual-step fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1