Sopb Samonte, D. Sanchez, Jbb Alpuerto, LT Wilson, Z. Yan, M. Thomson
{"title":"HETEROSIS AND HETEROTIC GROUPING EFFECTS ON GRAIN YIELD, HEIGHT, TILLER DENSITY, AND DAYS TO HEADING IN HYBRID RICE (ORYZA","authors":"Sopb Samonte, D. Sanchez, Jbb Alpuerto, LT Wilson, Z. Yan, M. Thomson","doi":"10.54910/sabrao2023.55.3.3","DOIUrl":null,"url":null,"abstract":"Heterotic groups are necessary for high vigor in hybrid rice. However, hybrids produced from crosses between parents from different rice subspecies (i.e., Indica × Japonica) have extensive incompatibility issues exhibited by low seed sets. The study objectives were to evaluate the heterosis in grain yield and yield-related traits between hybrids produced from low and high parental genetic distances (PGDs) and demonstrate the heterotic group approach in rice. From PGDs, eight and three hybrids were assigned to the low and high PGD hybrid groups, respectively. Neighbor-joining clustering and model-based population structure analyses classified the hybrid parents into four heterotic groups, with the low and high PGD hybrid groups found consisting of intra-subpopulation and intersubpopulation crosses, respectively. Replicated yield trials conducted at Beaumont, Texas, transpired in 2019 and 2020. The hybrids exhibited normal seed sets, with at least one of each hybrid's parents determined to possess the wide compatibility S5n allele necessary for normal seed sets in wide crosses. Trait and standard heterosis values estimates included the number of days to heading, plant height, tiller density, and grain yield. Higher trait values and heterosis for tiller density and grain yield occurred in the high than the low PGD hybrid group, especially in the inter-subpopulation crosses with indica rice. PGD had consistent positive correlations with heterosis for grain yield (r = 0.41 to 0.60) and tiller density (0.28 to 0.36) in both years. PGDs aid in determining highly heterotic cross combinations for tiller density and grain yield and in forming heterotic groups. Heterotic grouping is advisable through cluster and structure analyses of genome-wide markers instead of identifying genetically-distant crosses based on pedigree information.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sabrao Journal of Breeding and Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54910/sabrao2023.55.3.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heterotic groups are necessary for high vigor in hybrid rice. However, hybrids produced from crosses between parents from different rice subspecies (i.e., Indica × Japonica) have extensive incompatibility issues exhibited by low seed sets. The study objectives were to evaluate the heterosis in grain yield and yield-related traits between hybrids produced from low and high parental genetic distances (PGDs) and demonstrate the heterotic group approach in rice. From PGDs, eight and three hybrids were assigned to the low and high PGD hybrid groups, respectively. Neighbor-joining clustering and model-based population structure analyses classified the hybrid parents into four heterotic groups, with the low and high PGD hybrid groups found consisting of intra-subpopulation and intersubpopulation crosses, respectively. Replicated yield trials conducted at Beaumont, Texas, transpired in 2019 and 2020. The hybrids exhibited normal seed sets, with at least one of each hybrid's parents determined to possess the wide compatibility S5n allele necessary for normal seed sets in wide crosses. Trait and standard heterosis values estimates included the number of days to heading, plant height, tiller density, and grain yield. Higher trait values and heterosis for tiller density and grain yield occurred in the high than the low PGD hybrid group, especially in the inter-subpopulation crosses with indica rice. PGD had consistent positive correlations with heterosis for grain yield (r = 0.41 to 0.60) and tiller density (0.28 to 0.36) in both years. PGDs aid in determining highly heterotic cross combinations for tiller density and grain yield and in forming heterotic groups. Heterotic grouping is advisable through cluster and structure analyses of genome-wide markers instead of identifying genetically-distant crosses based on pedigree information.
期刊介绍:
The SABRAO Journal of Breeding and Genetics is an international journal of plant breeding and genetics research and was first published in 1969. It is the official publication of the Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO).
Its objectives are to: promote the international exchange of research information on plant breeding and genetics, by describing new research findings, or ideas of a basic or practical nature; and be a medium for the exchange of ideas and news regarding members of the Society.
The Journal gives priority to articles that are of direct relevance to plant breeders and with emphasis on the Asian region. Invited for publication are research articles, short communications, methods, reviews, commentaries, and opinion articles. Scientific contributions are refereed and edited to international standards.
The journal publishes articles for SABRAO members mainly. The Journal preferred strongly that at least one author should be a current member of the Society. Non-members may also publish in the journal.