Chloe Downs, A. Prasad, Bradford Robertson, D. Mavris
{"title":"Spaceflight Logistics Approach to Modeling Aggregated Vehicle Concepts","authors":"Chloe Downs, A. Prasad, Bradford Robertson, D. Mavris","doi":"10.2514/1.a35724","DOIUrl":null,"url":null,"abstract":"As space exploration moves toward long-duration, sustainable campaigns, operations such as in-space rendezvous, multiple launches, and in-space rendezvous or In-Situ Resource Utilization plants complicate campaign planning. The field of spaceflight logistics has been developed to perform the logistical planning for these new campaigns in an automated manner. Though previous tools have included aggregated vehicle concepts consisting of multiple vehicles, they have key limitations that may not be able to assess campaigns with more complex vehicle architectures and mission operations. This works aims to address these limitations by formulating a method to include independently operating vehicles that can also operate as an element within a larger stack across various different mission segments. Because of the use of the path-arc formulation, the optimizer has the flexibility to decide to use the independent vehicle stages independently, or within a stack. To prove the usefulness of this formulation, the methodology will be applied to a sample case that uses some of these aggregated space vehicles. In particular, a case study of a government reference Human Landing System mission will be used due to its inclusion of aggregated space vehicles.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35724","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
As space exploration moves toward long-duration, sustainable campaigns, operations such as in-space rendezvous, multiple launches, and in-space rendezvous or In-Situ Resource Utilization plants complicate campaign planning. The field of spaceflight logistics has been developed to perform the logistical planning for these new campaigns in an automated manner. Though previous tools have included aggregated vehicle concepts consisting of multiple vehicles, they have key limitations that may not be able to assess campaigns with more complex vehicle architectures and mission operations. This works aims to address these limitations by formulating a method to include independently operating vehicles that can also operate as an element within a larger stack across various different mission segments. Because of the use of the path-arc formulation, the optimizer has the flexibility to decide to use the independent vehicle stages independently, or within a stack. To prove the usefulness of this formulation, the methodology will be applied to a sample case that uses some of these aggregated space vehicles. In particular, a case study of a government reference Human Landing System mission will be used due to its inclusion of aggregated space vehicles.
期刊介绍:
This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.