{"title":"An alternative form of energy density demonstrating the severe strain-stiffening in thin spherical and cylindrical shells","authors":"Md. Moonim Lateefi , Deepak Kumar , Somnath Sarangi","doi":"10.1016/j.taml.2022.100361","DOIUrl":null,"url":null,"abstract":"<div><p>The present article investigates an elastic instability phenomenon for internally pressurized spherical thin balloons and thin cylindrical tubes composed of incompressible hyperelastic material. A mathematical model is formulated by proposing a new strain energy density function. In the family of limited elastic materials, many material models exhibit strain-stiffening. However, they fail to predict severe strain-stiffening in a moderate range of deformations in the stress-strain relations. The proposed energy function contains three material parameters and shows substantially improved stain stiffening properties than the limited elastic material models. The model is further applied to explore the elastic instability phenomenon in spherical and cylindrical shells. The findings are compared with other existing models and validated with experimental results. The model shows better agreement with experimental results and exhibits a substantial strain-stiffening effect than the current models.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"12 4","pages":"Article 100361"},"PeriodicalIF":3.2000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034922000411/pdfft?md5=4a8359ecc2367d4095aca5b5a5b2f14b&pid=1-s2.0-S2095034922000411-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034922000411","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2
Abstract
The present article investigates an elastic instability phenomenon for internally pressurized spherical thin balloons and thin cylindrical tubes composed of incompressible hyperelastic material. A mathematical model is formulated by proposing a new strain energy density function. In the family of limited elastic materials, many material models exhibit strain-stiffening. However, they fail to predict severe strain-stiffening in a moderate range of deformations in the stress-strain relations. The proposed energy function contains three material parameters and shows substantially improved stain stiffening properties than the limited elastic material models. The model is further applied to explore the elastic instability phenomenon in spherical and cylindrical shells. The findings are compared with other existing models and validated with experimental results. The model shows better agreement with experimental results and exhibits a substantial strain-stiffening effect than the current models.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).