{"title":"Visual Spatial Reasoning","authors":"Fangyu Liu, Guy Edward Toh Emerson, Nigel Collier","doi":"10.1162/tacl_a_00566","DOIUrl":null,"url":null,"abstract":"Spatial relations are a basic part of human cognition. However, they are expressed in natural language in a variety of ways, and previous work has suggested that current vision-and-language models (VLMs) struggle to capture relational information. In this paper, we present Visual Spatial Reasoning (VSR), a dataset containing more than 10k natural text-image pairs with 66 types of spatial relations in English (e.g., under, in front of, facing). While using a seemingly simple annotation format, we show how the dataset includes challenging linguistic phenomena, such as varying reference frames. We demonstrate a large gap between human and model performance: The human ceiling is above 95%, while state-of-the-art models only achieve around 70%. We observe that VLMs’ by-relation performances have little correlation with the number of training examples and the tested models are in general incapable of recognising relations concerning the orientations of objects.1","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"635-651"},"PeriodicalIF":4.2000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00566","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 35
Abstract
Spatial relations are a basic part of human cognition. However, they are expressed in natural language in a variety of ways, and previous work has suggested that current vision-and-language models (VLMs) struggle to capture relational information. In this paper, we present Visual Spatial Reasoning (VSR), a dataset containing more than 10k natural text-image pairs with 66 types of spatial relations in English (e.g., under, in front of, facing). While using a seemingly simple annotation format, we show how the dataset includes challenging linguistic phenomena, such as varying reference frames. We demonstrate a large gap between human and model performance: The human ceiling is above 95%, while state-of-the-art models only achieve around 70%. We observe that VLMs’ by-relation performances have little correlation with the number of training examples and the tested models are in general incapable of recognising relations concerning the orientations of objects.1
期刊介绍:
The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.