Computational budget optimization for Bayesian parameter estimation in heavy-ion collisions

IF 3.4 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Journal of Physics G: Nuclear and Particle Physics Pub Date : 2023-01-20 DOI:10.1088/1361-6471/acd0c7
B. Weiss, J. Paquet, S. Bass
{"title":"Computational budget optimization for Bayesian parameter estimation in heavy-ion collisions","authors":"B. Weiss, J. Paquet, S. Bass","doi":"10.1088/1361-6471/acd0c7","DOIUrl":null,"url":null,"abstract":"\n Bayesian parameter estimation provides a systematic approach to compare heavy ion collision models with measurements, leading to constraints on the properties of nuclear matter with proper accounting of experimental and theoretical uncertainties. Aside from statistical and systematic model uncertainties, interpolation uncertainties can also play a role in Bayesian inference, if the model’s predictions can only be calculated at a limited set of model parameters. This uncertainty originates from using an emulator to interpolate the model’s prediction across a continuous space of parameters. In this work, we study the trade-offs between the emulator (interpolation) and statistical uncertainties. We perform the analysis using spatial eccentricities from the TRENTo model of initial conditions for nuclear collisions. Given a fixed computational budget, we study the optimal compromise between the number of parameter samples and the number of collisions simulated per parameter sample. For the observables and parameters used in the present study, we find that the best constraints are achieved when the number of parameter samples is slightly smaller than the number of collisions simulated per parameter sample.","PeriodicalId":16766,"journal":{"name":"Journal of Physics G: Nuclear and Particle Physics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G: Nuclear and Particle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6471/acd0c7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 1

Abstract

Bayesian parameter estimation provides a systematic approach to compare heavy ion collision models with measurements, leading to constraints on the properties of nuclear matter with proper accounting of experimental and theoretical uncertainties. Aside from statistical and systematic model uncertainties, interpolation uncertainties can also play a role in Bayesian inference, if the model’s predictions can only be calculated at a limited set of model parameters. This uncertainty originates from using an emulator to interpolate the model’s prediction across a continuous space of parameters. In this work, we study the trade-offs between the emulator (interpolation) and statistical uncertainties. We perform the analysis using spatial eccentricities from the TRENTo model of initial conditions for nuclear collisions. Given a fixed computational budget, we study the optimal compromise between the number of parameter samples and the number of collisions simulated per parameter sample. For the observables and parameters used in the present study, we find that the best constraints are achieved when the number of parameter samples is slightly smaller than the number of collisions simulated per parameter sample.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重离子碰撞中贝叶斯参数估计的计算预算优化
贝叶斯参数估计提供了一种系统的方法来将重离子碰撞模型与测量结果进行比较,从而通过适当考虑实验和理论的不确定性来约束核物质的性质。除了统计和系统模型的不确定性之外,如果模型的预测只能在有限的一组模型参数下计算,那么插值不确定性也可以在贝叶斯推理中发挥作用。这种不确定性源于使用模拟器在参数的连续空间中对模型的预测进行插值。在这项工作中,我们研究了模拟器(插值)和统计不确定性之间的权衡。我们使用TRENTo核碰撞初始条件模型的空间偏心度进行分析。在固定的计算预算下,我们研究了参数样本数量和每个参数样本模拟的碰撞数量之间的最佳折衷。对于本研究中使用的可观测性和参数,我们发现,当参数样本的数量略小于每个参数样本模拟的碰撞数量时,可以实现最佳约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
5.70%
发文量
105
审稿时长
1 months
期刊介绍: Journal of Physics G: Nuclear and Particle Physics (JPhysG) publishes articles on theoretical and experimental topics in all areas of nuclear and particle physics, including nuclear and particle astrophysics. The journal welcomes submissions from any interface area between these fields. All aspects of fundamental nuclear physics research, including: nuclear forces and few-body systems; nuclear structure and nuclear reactions; rare decays and fundamental symmetries; hadronic physics, lattice QCD; heavy-ion physics; hot and dense matter, QCD phase diagram. All aspects of elementary particle physics research, including: high-energy particle physics; neutrino physics; phenomenology and theory; beyond standard model physics; electroweak interactions; fundamental symmetries. All aspects of nuclear and particle astrophysics including: nuclear physics of stars and stellar explosions; nucleosynthesis; nuclear equation of state; astrophysical neutrino physics; cosmic rays; dark matter. JPhysG publishes a variety of article types for the community. As well as high-quality research papers, this includes our prestigious topical review series, focus issues, and the rapid publication of letters.
期刊最新文献
Scalar exotic mesons bb c ¯ ... Photoproduction of the X(3872) beyond vector meson dominance: the open-charm coupled-channel mechanism Fermion condensates induced by axial interactions and cosmological implications Low-lying excited states in 62Ge investigated by multinucleon knock-out reaction Status and future directions for direct cross-section measurements of the 13C(a,n)16O reaction for astrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1