Research on Personal Credit Evaluation Based on Mobile Telecommunications Data

Shaoyong Hong, Yan Zhang, Chun Yang
{"title":"Research on Personal Credit Evaluation Based on Mobile Telecommunications Data","authors":"Shaoyong Hong, Yan Zhang, Chun Yang","doi":"10.4236/jdaip.2021.93010","DOIUrl":null,"url":null,"abstract":"With the rapid development of big data technology, the personal credit evaluation industry has entered a new stage. Among them, the evaluation of personal credit based on mobile telecommunications data is one of the hotspots of current research. However, due to the complexity and diversity of personal credit evaluation variables, in order to reduce the complexity of the model and improve the prediction accuracy of the model, we need to reduce the dimension of the input variables. According to the data provided by a mobile telecommunications operator, this paper divides the data into a training sets and verification sets. We perform correlation analysis on each indicator of the data in the training set, and calculate the corresponding IV value based on the WOE value of the selected index, then binning data with SPSS Modeler. The selected variables were modeled using a logistic regression algorithm. In order to make the regression results more practical, we extract the scoring rules according to the results of logistic regression, convert them into the form of score cards, and finally verify the validity of the model.","PeriodicalId":71434,"journal":{"name":"数据分析和信息处理(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数据分析和信息处理(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jdaip.2021.93010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the rapid development of big data technology, the personal credit evaluation industry has entered a new stage. Among them, the evaluation of personal credit based on mobile telecommunications data is one of the hotspots of current research. However, due to the complexity and diversity of personal credit evaluation variables, in order to reduce the complexity of the model and improve the prediction accuracy of the model, we need to reduce the dimension of the input variables. According to the data provided by a mobile telecommunications operator, this paper divides the data into a training sets and verification sets. We perform correlation analysis on each indicator of the data in the training set, and calculate the corresponding IV value based on the WOE value of the selected index, then binning data with SPSS Modeler. The selected variables were modeled using a logistic regression algorithm. In order to make the regression results more practical, we extract the scoring rules according to the results of logistic regression, convert them into the form of score cards, and finally verify the validity of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于移动通信数据的个人信用评价研究
随着大数据技术的快速发展,个人信用评估行业进入了一个新阶段。其中,基于移动通信数据的个人信用评价是当前研究的热点之一。然而,由于个人信用评价变量的复杂性和多样性,为了降低模型的复杂性,提高模型的预测精度,我们需要降低输入变量的维数。根据移动通信运营商提供的数据,本文将数据分为训练集和验证集。我们对训练集中数据的每个指标进行相关性分析,并根据所选指标的WOE值计算相应的IV值,然后使用SPSS Modeler对数据进行装箱。使用逻辑回归算法对所选变量进行建模。为了使回归结果更加实用,我们根据逻辑回归的结果提取了评分规则,并将其转换为记分卡的形式,最后验证了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
91
期刊最新文献
A Hybrid Neural Network Model Based on Transfer Learning for Forecasting Forex Market Enhancing Police Officers’ Cybercrime Investigation Skills Using a Checklist Tool A Sufficient Statistical Test for Dynamic Stability Lung Cancer Prediction from Elvira Biomedical Dataset Using Ensemble Classifier with Principal Component Analysis Modelling Key Population Attrition in the HIV and AIDS Programme in Kenya Using Random Survival Forests with Synthetic Minority Oversampling Technique-Nominal Continuous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1