COVID-19 Detection Using Forced Cough Sounds and Medical Information

Lucas Augusto Müller de Souza, H. Bernardino, Jairo Francisco de Souza, Alex Vieira
{"title":"COVID-19 Detection Using Forced Cough Sounds and Medical Information","authors":"Lucas Augusto Müller de Souza, H. Bernardino, Jairo Francisco de Souza, Alex Vieira","doi":"10.22456/2175-2745.126016","DOIUrl":null,"url":null,"abstract":"The World Health Organization (WHO) has declared the novel coronavirus (COVID-19) outbreak a global pandemic in March 2020. Through a lot of cooperation and the effort of scientists, several vaccines have been created. However, there is no guarantee that the virus will shortly disappear, even if a large part of the population is vaccinated. Therefore, non-invasive methods, with low cost and real-time results, are important to detect infected individuals and enable earlier adequate treatment, in addition to preventing the spread of the virus. An alternative is using forced cough sounds and medical information to distinguish a healthy person from those infected with COVID-19 via artificial intelligence. An additional challenge is the unbalancing of these data, as there are more samples of healthy individuals than contaminated ones. We propose here a Deep Neural Network model to classify people as healthy or sick concerning COVID-19. We used here a model composed by an Convolutional Neural Network and two other Neural Networks with two full-connected layers, each one trained with different data from the same individual. To evaluate the performance of the proposed method, we combined two datasets from the literature: COUGHVID and Coswara. That dataset contains clinical information regarding previous respiratory conditions, symptoms (fever or muscle pain), and a cough record. The results show that our model is simpler (with fewer parameters) than those from the literature and generalizes better the prediction of infected individuals. The proposal presents an average Area Under the ROC Curve (AUC) equal to 0.885 with a confidence interval (0.881 - 0.888), while the literature reports 0.771 with (0.752 - 0.783).","PeriodicalId":53421,"journal":{"name":"Revista de Informatica Teorica e Aplicada","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Informatica Teorica e Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.126016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The World Health Organization (WHO) has declared the novel coronavirus (COVID-19) outbreak a global pandemic in March 2020. Through a lot of cooperation and the effort of scientists, several vaccines have been created. However, there is no guarantee that the virus will shortly disappear, even if a large part of the population is vaccinated. Therefore, non-invasive methods, with low cost and real-time results, are important to detect infected individuals and enable earlier adequate treatment, in addition to preventing the spread of the virus. An alternative is using forced cough sounds and medical information to distinguish a healthy person from those infected with COVID-19 via artificial intelligence. An additional challenge is the unbalancing of these data, as there are more samples of healthy individuals than contaminated ones. We propose here a Deep Neural Network model to classify people as healthy or sick concerning COVID-19. We used here a model composed by an Convolutional Neural Network and two other Neural Networks with two full-connected layers, each one trained with different data from the same individual. To evaluate the performance of the proposed method, we combined two datasets from the literature: COUGHVID and Coswara. That dataset contains clinical information regarding previous respiratory conditions, symptoms (fever or muscle pain), and a cough record. The results show that our model is simpler (with fewer parameters) than those from the literature and generalizes better the prediction of infected individuals. The proposal presents an average Area Under the ROC Curve (AUC) equal to 0.885 with a confidence interval (0.881 - 0.888), while the literature reports 0.771 with (0.752 - 0.783).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用咳嗽声和医疗信息检测新冠肺炎
世界卫生组织(世界卫生组织)已于2020年3月宣布新型冠状病毒疫情为全球大流行。通过大量的合作和科学家的努力,已经研制出了几种疫苗。然而,即使大部分人口接种了疫苗,也不能保证病毒会很快消失。因此,除了防止病毒传播外,具有低成本和实时结果的非侵入性方法对于检测感染者和实现早期充分治疗非常重要。另一种选择是使用强制咳嗽声和医疗信息,通过人工智能将健康人与新冠肺炎感染者区分开来。另一个挑战是这些数据的不平衡,因为健康个体的样本比受污染个体的样本更多。我们在这里提出了一个深度神经网络模型,将人们分类为与新冠肺炎有关的健康或疾病。我们在这里使用了一个由卷积神经网络和另外两个具有两个全连接层的神经网络组成的模型,每个层都用来自同一个人的不同数据进行训练。为了评估所提出方法的性能,我们结合了文献中的两个数据集:COUGHVID和Coswara。该数据集包含有关先前呼吸道疾病、症状(发烧或肌肉疼痛)和咳嗽记录的临床信息。结果表明,我们的模型比文献中的模型更简单(参数更少),并且更好地概括了感染者的预测。该提案的ROC曲线下平均面积(AUC)等于0.885,置信区间为(0.881-0.888),而文献报告的ROC平均面积为0.771,置信区间(0.752-0.783)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista de Informatica Teorica e Aplicada
Revista de Informatica Teorica e Aplicada Computer Science-Computer Science (all)
CiteScore
0.90
自引率
0.00%
发文量
14
期刊最新文献
Evaluación del Rendimiento de una red IPv6 utilizando IPSec en Modo Túnel Aplicación multiplataforma de modelo computacional predictivo Implementación de una solución de Inteligencia de Negocios aplicada al Suministro de Fuerza de Trabajo Análisis de los derechos a la intimidad y privacidad sobre los datos personales en la legislación Ecuatoriana Vulnerabilidades de las cookies en aplicaciones web: Redes Sociales y Streaming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1