David Alba-Molina, Juan J. Giner-Casares, Manuel Cano
{"title":"Bioconjugated Plasmonic Nanoparticles for Enhanced Skin Penetration","authors":"David Alba-Molina, Juan J. Giner-Casares, Manuel Cano","doi":"10.1007/s41061-019-0273-0","DOIUrl":null,"url":null,"abstract":"<p>Plasmonic nanoparticles (NPs) are one of the most promising and studied inorganic nanomaterials for different biomedical applications. Plasmonic NPs have excellent biocompatibility, long-term stability against physical and chemical degradation, relevant optical properties, well-known synthesis methods and tuneable surface functionalities. Herein, we?review recently reported bioconjugated plasmonic NPs using different chemical approaches and loading cargoes (such as drugs, genes, and proteins) for enhancement of transdermal delivery across biological tissues. The main aim is to understand the interaction of the complex skin structure with biomimetic plasmonic NPs. This knowledge is not only important in enhancing transdermal delivery of pharmaceutical formulations but also for controlling undesired skin penetration of industrial products, such as cosmetics, sunscreen formulations and any other mass-usage consumable that contains plasmonic?NPs.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-019-0273-0","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-019-0273-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12
Abstract
Plasmonic nanoparticles (NPs) are one of the most promising and studied inorganic nanomaterials for different biomedical applications. Plasmonic NPs have excellent biocompatibility, long-term stability against physical and chemical degradation, relevant optical properties, well-known synthesis methods and tuneable surface functionalities. Herein, we?review recently reported bioconjugated plasmonic NPs using different chemical approaches and loading cargoes (such as drugs, genes, and proteins) for enhancement of transdermal delivery across biological tissues. The main aim is to understand the interaction of the complex skin structure with biomimetic plasmonic NPs. This knowledge is not only important in enhancing transdermal delivery of pharmaceutical formulations but also for controlling undesired skin penetration of industrial products, such as cosmetics, sunscreen formulations and any other mass-usage consumable that contains plasmonic?NPs.
期刊介绍:
Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.