{"title":"Current Usage Patterns of Open Educational Resources in the Engineering Mechanics Classroom and Barriers to Adoption","authors":"Jacob P. Moore, Thomas L. Reinsfelder","doi":"10.29173/ISTL65","DOIUrl":null,"url":null,"abstract":"Open Educational Resources (OER) represent a small but growing portion of the educational resources market, but the use of OER in engineering is limited. This study seeks to identify the current adoption patterns of OER in engineering mechanics courses and barriers to adoption. Research questions are examined through the lens of Rogers' Diffusion of Innovation model. A survey of mechanics instructors across the United States, combined with publicly available data from college and university websites, were used to identify instructor practices and opinions regarding OER. During the 2017-2018 academic year, widespread OER usage was found at only a handful of institutions. However, knowledge of OER among mechanics instructors was high, and many instructors reported an interest in OER for their courses. A lack of quality OER content for engineering mechanics courses seems to be the primary barrier to more widespread adoption. Background and Introduction This study aims to explore the current state of Open Educational Resources (OER) use in introductory engineering mechanics courses. According to the William and Flora Hewlett Foundation: Open Educational Resources (OER) are teaching, learning, and research resources that reside in the public domain or have been released under an intellectual property license that permits their free use and repurposing by others. OER include full courses, course materials, modules, textbooks, streaming videos, tests, software, and any other tools, materials, or techniques used to support access to knowledge (2019). While an increasing amount of data exists on the use of OER in higher education, there is very little research on the use of OER in engineering specifically. This study examines the current use of OER in engineering education and identifies barriers to adoption in the engineering curriculum through a survey of mechanics instructors and analysis of publicly available data from college and university websites. Using OER in the Classroom When used in place of traditionally published commercial content, OER can have several advantages. First, OER are free to use. In a study of five large institutions pushing to utilize more OER in their classes, researchers found that OER saved students an average of $128 per class (Senack 2015). With the College Board (2017) advising students to budget between $1,220 and $1,420 a year for textbooks and other supplies, it becomes clear that OER has a huge potential for lowering the cost of college. In fact, the increase in the cost of textbooks far exceeds the rate of inflation (Popken 2015), and everyone from educators (Tovar & Piedra 2014) to non-profits (William and Flora Hewlett Foundation 2019) to legislators (Polis et al. 2017) are seeking to rein in costs. Rapidly increasing textbook costs go beyond an inconvenience to an issue of access. Up to 65% of students declined to buy or rent a textbook due to cost, even though 94% of those same students thought it hurt their grades in that course (Senack 2015). Beyond being free to students, the licensing agreements on open resources also make them fundamentally more adaptable for instructors. This allows instructors to mix and match resources, add self-authored content as they see fit, and contribute to the evolution of the resources that they employ for teaching. While this authoring and adaptation may take extra time on the part of the instructor, past research has shown that instructors overwhelmingly tend to adapt educational innovations to their setting, rather than adopting them verbatim (Henderson & Dancy 2007). The ethos of creative commons and public domain licenses play into the tendency, giving instructors more control. When examining the effect of OER on student learning, the results are generally positive. Most direct comparisons of traditionally published materials and OER show no advantage one way or the other in terms of student learning outcomes (Allen et al. 2015; Winitzky-Stephens & Pickavance 2017). Some smaller studies found learning gains associated with OER (Ackovska & Ristov 2014; Llamas-Nistal & Mikic-Fonte 2014; QingHua et al. 2014), but in many of these cases there was a significant shift in content delivery methods beyond simply opening up the content. There are other studies, however, where significant impacts on student learning were observed due to increases in access and affordability. Researchers at the University of Georgia in a multi-year university-wide study found significant drops in DFW grades (i.e., students receiving D grades, F grades, or withdrawing from the course) along with corresponding increases in the B+ and higher grades when courses implemented OER into their classrooms (Colvard et al. 2018). This positive impact was concentrated in low income students, as indicated by Pell Grant eligibility. There is nothing about the structure of OER that makes it a better learning resource than traditionally published content for students when everyone has equal access, but access is not equal. OER improves the learning environment by making access to learning resources more equitable. Despite the above considerations, OER represented a relatively small share (9%) of the overall textbook market in higher education for the 2016-2017 academic year (Seaman & Seaman 2017). This was a significant rise over the 5% recorded in 2015-2016, but still far from a majority. Seaman & Seaman (2017) found large, introductory, multi-section courses such as calculus, chemistry, and physics had the highest rates of adoption (16.5%) and that the OpenStax textbooks series (https://openstax.org/) represented the dominant provider of open content in the population studied. OER in Engineering Education When examining the effects of OER in engineering education specifically, we find more limited research and resources. As librarians seeking to increase the use of OERs at two western US institutions, Anderson et al. (2017) found that \"few resources existed for specialized upperdivision engineering courses.\" In a survey of engineering faculty reported in the same study, the authors observed that 59% of the faculty interviewed had little or no familiarity with OER. Others acknowledged possible benefits (reduced costs and customization), but also reported concerns about quality and difficulty finding engineering OER. Further responses from faculty indicated that some used OER to supplement commercial texts rather than replace them, which would increase awareness and discussion even if high textbook costs remain an issue. As the authors note, \"one size does not fit all when it comes to open education,\" and strategies to increase the use of open resources may vary from one class to the next. Some engineering OER textbooks and resources do exist and can be found in repositories such as MERLOT (http://merlot.org/merlot/index.htm) or the Open Textbook Library (https://open.umn.edu/opentextbooks), but options are more limited than with \"general education\" subjects such as chemistry, economics, math, physics, etc. Additionally, it can be noted that OpenStax, the predominant OER publisher in higher education (Seaman & Seaman 2017), does not currently offer any OER for engineering subjects, further speaking to the limited availability of these resources in engineering. Tovar and Piedra (2014) provide a review of OER related to computer and electrical engineering specifically, but no such reviews seem to be available for other engineering subjects. Overall, OERs seems to be limited in engineering, along with limited reviews of OER materials, and limited research within the context of engineering education. The Adoption of Other Innovations in Engineering Education Because of limited OER adoption in engineering subjects and limited research on OER adoption in engineering education, the authors also sought to examine the adoption patterns of other educational innovations in engineering education to help shed light on how OER might be adopted in the community. The spread of innovations such as problem-based learning, instant-feedback system (clickers), just-in-time teaching, think-pair-share, as well as several other innovations have been more thoroughly examined than the spread of OER. In particular, Borrego and colleagues (Borrego et al. 2010; Borrego et al. 2013; Borrego & Henderson 2014) have done a lot of work in the area of the spread of innovations in engineering education. Borrego noted extensive research surrounding the effectiveness of the learning innovations in her study, though adoption rates of these innovations remain low. Simply proving the worth of an educational innovation through research does not lead to widespread adoption within the engineering education community, highlighting the importance of understanding the spread of the innovation. This conclusion mirrors work done in physics education, where research found that adoption of pedagogical innovations remains limited even if awareness of these innovations and motivations to implement them are high (Henderson & Dancy 2007; Dancy & Henderson 2010). Rogers Diffusion of Innovation Model Following the lead of Borrego and colleagues (Borrego et al. 2010; Borrego et al. 2013), the authors chose to use Rogers' Diffusion of Innovation model (2003) as a guide to understand the spread of an innovation. This model is a framework for understanding how ideas or tools spread through a social system. Since its introduction in the early 1960s, the model has become a staple of social science and was used in this study as a framework through which we can examine the adoption of OER as an innovation. Rogers' model proposes that the four main elements that impact the spread of a new idea: the nature of the innovation itself, the communication channels, time, and the social system in which the innovation is being adopted. Each of these elements, along with the characteristics of OER adopters, will be addressed in the Results and Discussion sec","PeriodicalId":39287,"journal":{"name":"Issues in Science and Technology Librarianship","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Issues in Science and Technology Librarianship","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29173/ISTL65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 4
Abstract
Open Educational Resources (OER) represent a small but growing portion of the educational resources market, but the use of OER in engineering is limited. This study seeks to identify the current adoption patterns of OER in engineering mechanics courses and barriers to adoption. Research questions are examined through the lens of Rogers' Diffusion of Innovation model. A survey of mechanics instructors across the United States, combined with publicly available data from college and university websites, were used to identify instructor practices and opinions regarding OER. During the 2017-2018 academic year, widespread OER usage was found at only a handful of institutions. However, knowledge of OER among mechanics instructors was high, and many instructors reported an interest in OER for their courses. A lack of quality OER content for engineering mechanics courses seems to be the primary barrier to more widespread adoption. Background and Introduction This study aims to explore the current state of Open Educational Resources (OER) use in introductory engineering mechanics courses. According to the William and Flora Hewlett Foundation: Open Educational Resources (OER) are teaching, learning, and research resources that reside in the public domain or have been released under an intellectual property license that permits their free use and repurposing by others. OER include full courses, course materials, modules, textbooks, streaming videos, tests, software, and any other tools, materials, or techniques used to support access to knowledge (2019). While an increasing amount of data exists on the use of OER in higher education, there is very little research on the use of OER in engineering specifically. This study examines the current use of OER in engineering education and identifies barriers to adoption in the engineering curriculum through a survey of mechanics instructors and analysis of publicly available data from college and university websites. Using OER in the Classroom When used in place of traditionally published commercial content, OER can have several advantages. First, OER are free to use. In a study of five large institutions pushing to utilize more OER in their classes, researchers found that OER saved students an average of $128 per class (Senack 2015). With the College Board (2017) advising students to budget between $1,220 and $1,420 a year for textbooks and other supplies, it becomes clear that OER has a huge potential for lowering the cost of college. In fact, the increase in the cost of textbooks far exceeds the rate of inflation (Popken 2015), and everyone from educators (Tovar & Piedra 2014) to non-profits (William and Flora Hewlett Foundation 2019) to legislators (Polis et al. 2017) are seeking to rein in costs. Rapidly increasing textbook costs go beyond an inconvenience to an issue of access. Up to 65% of students declined to buy or rent a textbook due to cost, even though 94% of those same students thought it hurt their grades in that course (Senack 2015). Beyond being free to students, the licensing agreements on open resources also make them fundamentally more adaptable for instructors. This allows instructors to mix and match resources, add self-authored content as they see fit, and contribute to the evolution of the resources that they employ for teaching. While this authoring and adaptation may take extra time on the part of the instructor, past research has shown that instructors overwhelmingly tend to adapt educational innovations to their setting, rather than adopting them verbatim (Henderson & Dancy 2007). The ethos of creative commons and public domain licenses play into the tendency, giving instructors more control. When examining the effect of OER on student learning, the results are generally positive. Most direct comparisons of traditionally published materials and OER show no advantage one way or the other in terms of student learning outcomes (Allen et al. 2015; Winitzky-Stephens & Pickavance 2017). Some smaller studies found learning gains associated with OER (Ackovska & Ristov 2014; Llamas-Nistal & Mikic-Fonte 2014; QingHua et al. 2014), but in many of these cases there was a significant shift in content delivery methods beyond simply opening up the content. There are other studies, however, where significant impacts on student learning were observed due to increases in access and affordability. Researchers at the University of Georgia in a multi-year university-wide study found significant drops in DFW grades (i.e., students receiving D grades, F grades, or withdrawing from the course) along with corresponding increases in the B+ and higher grades when courses implemented OER into their classrooms (Colvard et al. 2018). This positive impact was concentrated in low income students, as indicated by Pell Grant eligibility. There is nothing about the structure of OER that makes it a better learning resource than traditionally published content for students when everyone has equal access, but access is not equal. OER improves the learning environment by making access to learning resources more equitable. Despite the above considerations, OER represented a relatively small share (9%) of the overall textbook market in higher education for the 2016-2017 academic year (Seaman & Seaman 2017). This was a significant rise over the 5% recorded in 2015-2016, but still far from a majority. Seaman & Seaman (2017) found large, introductory, multi-section courses such as calculus, chemistry, and physics had the highest rates of adoption (16.5%) and that the OpenStax textbooks series (https://openstax.org/) represented the dominant provider of open content in the population studied. OER in Engineering Education When examining the effects of OER in engineering education specifically, we find more limited research and resources. As librarians seeking to increase the use of OERs at two western US institutions, Anderson et al. (2017) found that "few resources existed for specialized upperdivision engineering courses." In a survey of engineering faculty reported in the same study, the authors observed that 59% of the faculty interviewed had little or no familiarity with OER. Others acknowledged possible benefits (reduced costs and customization), but also reported concerns about quality and difficulty finding engineering OER. Further responses from faculty indicated that some used OER to supplement commercial texts rather than replace them, which would increase awareness and discussion even if high textbook costs remain an issue. As the authors note, "one size does not fit all when it comes to open education," and strategies to increase the use of open resources may vary from one class to the next. Some engineering OER textbooks and resources do exist and can be found in repositories such as MERLOT (http://merlot.org/merlot/index.htm) or the Open Textbook Library (https://open.umn.edu/opentextbooks), but options are more limited than with "general education" subjects such as chemistry, economics, math, physics, etc. Additionally, it can be noted that OpenStax, the predominant OER publisher in higher education (Seaman & Seaman 2017), does not currently offer any OER for engineering subjects, further speaking to the limited availability of these resources in engineering. Tovar and Piedra (2014) provide a review of OER related to computer and electrical engineering specifically, but no such reviews seem to be available for other engineering subjects. Overall, OERs seems to be limited in engineering, along with limited reviews of OER materials, and limited research within the context of engineering education. The Adoption of Other Innovations in Engineering Education Because of limited OER adoption in engineering subjects and limited research on OER adoption in engineering education, the authors also sought to examine the adoption patterns of other educational innovations in engineering education to help shed light on how OER might be adopted in the community. The spread of innovations such as problem-based learning, instant-feedback system (clickers), just-in-time teaching, think-pair-share, as well as several other innovations have been more thoroughly examined than the spread of OER. In particular, Borrego and colleagues (Borrego et al. 2010; Borrego et al. 2013; Borrego & Henderson 2014) have done a lot of work in the area of the spread of innovations in engineering education. Borrego noted extensive research surrounding the effectiveness of the learning innovations in her study, though adoption rates of these innovations remain low. Simply proving the worth of an educational innovation through research does not lead to widespread adoption within the engineering education community, highlighting the importance of understanding the spread of the innovation. This conclusion mirrors work done in physics education, where research found that adoption of pedagogical innovations remains limited even if awareness of these innovations and motivations to implement them are high (Henderson & Dancy 2007; Dancy & Henderson 2010). Rogers Diffusion of Innovation Model Following the lead of Borrego and colleagues (Borrego et al. 2010; Borrego et al. 2013), the authors chose to use Rogers' Diffusion of Innovation model (2003) as a guide to understand the spread of an innovation. This model is a framework for understanding how ideas or tools spread through a social system. Since its introduction in the early 1960s, the model has become a staple of social science and was used in this study as a framework through which we can examine the adoption of OER as an innovation. Rogers' model proposes that the four main elements that impact the spread of a new idea: the nature of the innovation itself, the communication channels, time, and the social system in which the innovation is being adopted. Each of these elements, along with the characteristics of OER adopters, will be addressed in the Results and Discussion sec