Light absorption enhancement in organic solar cell using non-concentric Ag:SiO2 core-shell nanoparticles

M. Muldarisnur, F. Fahendri, Ilham Perdana, Z. Abdullah, M. Yusfi
{"title":"Light absorption enhancement in organic solar cell using non-concentric Ag:SiO2 core-shell nanoparticles","authors":"M. Muldarisnur, F. Fahendri, Ilham Perdana, Z. Abdullah, M. Yusfi","doi":"10.21924/cst.8.1.2023.1076","DOIUrl":null,"url":null,"abstract":"Low solar energy conversion efficiency prevents the widespread of organic solar cells; hence, metal nanoparticles have been used to overcome this problem without increasing cell thickness. We investigated light absorption enhancement in view of the embedment of Ag:SiO2 core-shell nanoparticles of different shell thicknesses, core offsets, offset orientation angles, and vertical mismatches between neighboring particles. The simulations were carried out using the finite element method. This is the first investigation in the use of asymmetric nanoparticles. At optimized conditions, absorption enhancement up to 345% compared to the one without the nanoparticles could be achieved. The enhancement was found much higher than that of the published values. The enhancement results were mainly from the increase of near-field localization and scattering in the active layer of solar cells due to the excitation of Fano resonances. The resonance occurred due to the non-symmetric nature of the core-shell nanoparticles.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.8.1.2023.1076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Low solar energy conversion efficiency prevents the widespread of organic solar cells; hence, metal nanoparticles have been used to overcome this problem without increasing cell thickness. We investigated light absorption enhancement in view of the embedment of Ag:SiO2 core-shell nanoparticles of different shell thicknesses, core offsets, offset orientation angles, and vertical mismatches between neighboring particles. The simulations were carried out using the finite element method. This is the first investigation in the use of asymmetric nanoparticles. At optimized conditions, absorption enhancement up to 345% compared to the one without the nanoparticles could be achieved. The enhancement was found much higher than that of the published values. The enhancement results were mainly from the increase of near-field localization and scattering in the active layer of solar cells due to the excitation of Fano resonances. The resonance occurred due to the non-symmetric nature of the core-shell nanoparticles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非同心Ag:SiO2核壳纳米颗粒增强有机太阳能电池的光吸收
太阳能转换效率低阻碍了有机太阳能电池的广泛应用;因此,金属纳米颗粒已被用来克服这个问题,而不增加细胞厚度。研究了不同壳层厚度、不同芯层偏移量、不同取向角偏移量、不同垂直不匹配等因素对Ag:SiO2核壳纳米粒子光吸收增强的影响。采用有限元方法进行了仿真。这是首次使用不对称纳米粒子进行研究。在优化条件下,与不添加纳米颗粒相比,吸收增强可达345%。发现该增强值远高于已公布的值。增强结果主要来自于Fano共振激发下太阳能电池有源层近场局域化和散射的增加。共振的发生是由于核壳纳米粒子的非对称性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications in Science and Technology
Communications in Science and Technology Engineering-Engineering (all)
CiteScore
3.20
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊最新文献
Improving the activity of CO2 capturing from flue gas by membrane gas – solvent absorption process Efficient removal of amoxicillin, ciprofloxacin, and tetracycline from aqueous solution by Cu-Bi2O3 synthesized using precipitation-assisted-microwave Development of CaCO3 novel morphology through crystal lattice modification assisted by sulfate incorporation and vibration The impact of bacillus sp. NTLG2-20 and reduced nitrogen fertilization on soil properties and peanut yield Simulation and optimization of fatty acid extraction parameters from Nannochloropsis sp. using supercritical carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1