{"title":"Direct torque control of electric vehicle drives using hybrid techniques","authors":"H. B. Marulasiddappa, V. Pushparajesh","doi":"10.11591/ijece.v13i5.pp5026-5034","DOIUrl":null,"url":null,"abstract":"Permanent magnet synchronous motors (PMSM) have the capability of delivering a high torque-to-current ratio, better efficiency and low noise. Because of the above-mentioned factors, PMSMs are commonly employed in variable speed drives, especially in electric vehicle (EV) applications. Without the usage of electromechanical devices, the conventional direct torque control (DTC) can control the speed and torque of PMSM. DTC is highly efficient, fast-tracking and provides smooth torque while limiting its ripple during transient periods. There are many benefits to using a DTC-controlled PMSM drive, including quick and reliable torque reaction, high-performance control speed, and enhanced performance. This research examines the use of the DTC approach to enhance the speed and torque behavior of PMSM. The jellyfish search optimizer (JSO) is used to adjust the DTC's responsiveness and tailor the controller's best gains. In order to train the adaptive neuro-fuzzy inference system (ANFIS) controller, JSO data are utilized. The simulation outcomes demonstrate that the proposed JSO-ANFIS controller achieves a minimal torque ripple of 0.26 Nm and preserves the speed with a harmonic error of 1.21% while contrasted to existing methods.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5026-5034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Permanent magnet synchronous motors (PMSM) have the capability of delivering a high torque-to-current ratio, better efficiency and low noise. Because of the above-mentioned factors, PMSMs are commonly employed in variable speed drives, especially in electric vehicle (EV) applications. Without the usage of electromechanical devices, the conventional direct torque control (DTC) can control the speed and torque of PMSM. DTC is highly efficient, fast-tracking and provides smooth torque while limiting its ripple during transient periods. There are many benefits to using a DTC-controlled PMSM drive, including quick and reliable torque reaction, high-performance control speed, and enhanced performance. This research examines the use of the DTC approach to enhance the speed and torque behavior of PMSM. The jellyfish search optimizer (JSO) is used to adjust the DTC's responsiveness and tailor the controller's best gains. In order to train the adaptive neuro-fuzzy inference system (ANFIS) controller, JSO data are utilized. The simulation outcomes demonstrate that the proposed JSO-ANFIS controller achieves a minimal torque ripple of 0.26 Nm and preserves the speed with a harmonic error of 1.21% while contrasted to existing methods.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]