Automatic Algorithm Programming Model Based on the Improved Morgan's Refinement Calculus

Z. Zuo, Ying Hu, Qing Huang, Yuan Wang, Changjing Wang
{"title":"Automatic Algorithm Programming Model Based on the Improved Morgan's Refinement Calculus","authors":"Z. Zuo, Ying Hu, Qing Huang, Yuan Wang, Changjing Wang","doi":"10.1051/wujns/2022275405","DOIUrl":null,"url":null,"abstract":"The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development, including specification generation, program refinement, and formal verification. However, the existing model has two flaws: incompleteness of program refinement and inadequate automation of formal verification. This paper proposes an automatic algorithm programming model based on the improved Morgan's refinement calculus. It extends the Morgan's refinement calculus rules and designs the C++ generation system for realizing the complete process of refinement. Meanwhile, the automation tools VCG (Verification Condition Generator) and Isabelle are used to improve the automation of formal verification. An example of a stock's maximum income demonstrates the effectiveness of the proposed model. Furthermore, the proposed model has some relevance for automatic software generation.","PeriodicalId":23976,"journal":{"name":"Wuhan University Journal of Natural Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wuhan University Journal of Natural Sciences","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/wujns/2022275405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development, including specification generation, program refinement, and formal verification. However, the existing model has two flaws: incompleteness of program refinement and inadequate automation of formal verification. This paper proposes an automatic algorithm programming model based on the improved Morgan's refinement calculus. It extends the Morgan's refinement calculus rules and designs the C++ generation system for realizing the complete process of refinement. Meanwhile, the automation tools VCG (Verification Condition Generator) and Isabelle are used to improve the automation of formal verification. An example of a stock's maximum income demonstrates the effectiveness of the proposed model. Furthermore, the proposed model has some relevance for automatic software generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进摩根精算的自动算法规划模型
自动算法编程模型可以提高算法程序开发的可靠性和效率,包括规范生成、程序精化和形式化验证。然而,现有的模型存在两个缺陷:程序细化的不完备和形式验证的不自动化。本文提出了一种基于改进的摩根精算的自动算法规划模型。扩展了Morgan的细化演算规则,设计了c++生成系统,实现了整个细化过程。同时,利用自动化工具VCG (Verification Condition Generator)和Isabelle来提高形式化验证的自动化程度。一个股票最大收益的例子证明了该模型的有效性。此外,所提出的模型对软件的自动生成具有一定的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wuhan University Journal of Natural Sciences
Wuhan University Journal of Natural Sciences Multidisciplinary-Multidisciplinary
CiteScore
0.40
自引率
0.00%
发文量
2485
期刊介绍: Wuhan University Journal of Natural Sciences aims to promote rapid communication and exchange between the World and Wuhan University, as well as other Chinese universities and academic institutions. It mainly reflects the latest advances being made in many disciplines of scientific research in Chinese universities and academic institutions. The journal also publishes papers presented at conferences in China and abroad. The multi-disciplinary nature of Wuhan University Journal of Natural Sciences is apparent in the wide range of articles from leading Chinese scholars. This journal also aims to introduce Chinese academic achievements to the world community, by demonstrating the significance of Chinese scientific investigations.
期刊最新文献
Comprehensive Analysis of the Role of Forkhead Box J3 (FOXJ3) in Human Cancers Three New Classes of Subsystem Codes A Note of the Interpolating Sequence in Qp∩H∞ Learning Label Correlations for Multi-Label Online Passive Aggressive Classification Algorithm Uniform Asymptotics for Finite-Time Ruin Probabilities of Risk Models with Non-Stationary Arrivals and Strongly Subexponential Claim Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1