Bending Pyrenacenes to Fill Gaps in Singlet-Fission-Based Solar Cells

C. Cruz, Joshua C. Walsh, M. Juríček
{"title":"Bending Pyrenacenes to Fill Gaps in Singlet-Fission-Based Solar Cells","authors":"C. Cruz, Joshua C. Walsh, M. Juríček","doi":"10.1055/a-1939-6110","DOIUrl":null,"url":null,"abstract":"Singlet fission is envisaged to enhance the efficiency of single-junction solar cells beyond the current theoretical limit. Even though sensitizers that undergo singlet fission efficiently are known, characteristics like low-energy triplet state or insufficient stability restrict their use in silicon-based solar cells. Pyrenacenes have the potential to overcome these limitations, but singlet-fission processes in these materials is outcompeted by excimer formation. In this work, bent pyrenacenes with a reduced propensity to stack and thus form excimers are computationally evaluated as singlet-fission materials. The energies of the S1, T1 and T2 states were estimated in a series of bent pyrenacenes by means of (TD)-DFT calculations. Our results show the opposite trend observed for perylene diimides, namely, an increase in the energy of the T1 and S1 states upon bending. In addition, we show that the energy levels can be tuned on demand by manipulating the bend angle to match the energy gap of various semiconductors that can be used in single-junction solar cells, making pyrenacenes promising candidates for singlet fission.","PeriodicalId":93348,"journal":{"name":"Organic Materials","volume":"4 1","pages":"163 - 169"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-1939-6110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Singlet fission is envisaged to enhance the efficiency of single-junction solar cells beyond the current theoretical limit. Even though sensitizers that undergo singlet fission efficiently are known, characteristics like low-energy triplet state or insufficient stability restrict their use in silicon-based solar cells. Pyrenacenes have the potential to overcome these limitations, but singlet-fission processes in these materials is outcompeted by excimer formation. In this work, bent pyrenacenes with a reduced propensity to stack and thus form excimers are computationally evaluated as singlet-fission materials. The energies of the S1, T1 and T2 states were estimated in a series of bent pyrenacenes by means of (TD)-DFT calculations. Our results show the opposite trend observed for perylene diimides, namely, an increase in the energy of the T1 and S1 states upon bending. In addition, we show that the energy levels can be tuned on demand by manipulating the bend angle to match the energy gap of various semiconductors that can be used in single-junction solar cells, making pyrenacenes promising candidates for singlet fission.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弯曲Pyrenacenes以填充单核裂变太阳能电池中的间隙
单核裂变被设想为将单结太阳能电池的效率提高到目前的理论极限之外。尽管有效地进行单线态裂变的敏化剂是已知的,但低能量三线态或稳定性不足等特性限制了它们在硅基太阳能电池中的使用。Pyrenacenes有可能克服这些限制,但这些材料中的单线态裂变过程被准分子的形成所击败。在这项工作中,通过计算,将具有降低的堆叠倾向并因此形成激发基的弯曲吡喃烯评估为单线态裂变材料。通过(TD)-DFT计算,在一系列弯曲的吡喃烯中估算了S1、T1和T2态的能量。我们的结果显示了对苝二亚胺观察到的相反趋势,即弯曲时T1和S1状态的能量增加。此外,我们还表明,可以根据需要通过操纵弯曲角度来调整能级,以匹配可用于单结太阳能电池的各种半导体的能隙,从而使吡喃烯有望用于单线态裂变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Towards the Tetrabenzo-Fused Circumazulene via In-Solution and On-Surface Synthesis Metal-Catalyzed Multi-Component Approach to Quinoline-Linked Covalent Organic Frameworks 2D Conductive Metal–Organic Frameworks for Electrochemical Energy Application A Nonbenzenoid 3D Nanographene Containing 5/6/7/8-Membered Rings Diazananographene with Quadruple [5]Helicene Units: Synthesis, Optical Properties, and Supramolecular Assembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1