{"title":"Bayesian Change-Point Analysis Approach to Detecting Aberrant Test-Taking Behavior Using Response Times","authors":"Hongyue Zhu, Hong Jiao, Wei Gao, Xiangbin Meng","doi":"10.3102/10769986231151961","DOIUrl":null,"url":null,"abstract":"Change-point analysis (CPA) is a method for detecting abrupt changes in parameter(s) underlying a sequence of random variables. It has been applied to detect examinees’ aberrant test-taking behavior by identifying abrupt test performance change. Previous studies utilized maximum likelihood estimations of ability parameters, focusing on detecting one change point for each examinee. This article proposes a Bayesian CPA procedure using response times (RTs) to detect abrupt changes in examinee speed, which may be related to aberrant responding behaviors. The lognormal RT model is used to derive a procedure for detecting aberrant RT patterns. The method takes the numbers and locations of the change points as parameters in the model to detect multiple change points or multiple aberrant behaviors. Given the change points, the corresponding speed of each segment in the test can be estimated, which enables more accurate inferences about aberrant behaviors. Simulation study results indicate that the proposed procedure can effectively detect simulated aberrant behaviors and estimate change points accurately. The method is applied to data from a high-stakes computerized adaptive test, where its applicability is demonstrated.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"48 1","pages":"490 - 520"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231151961","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Change-point analysis (CPA) is a method for detecting abrupt changes in parameter(s) underlying a sequence of random variables. It has been applied to detect examinees’ aberrant test-taking behavior by identifying abrupt test performance change. Previous studies utilized maximum likelihood estimations of ability parameters, focusing on detecting one change point for each examinee. This article proposes a Bayesian CPA procedure using response times (RTs) to detect abrupt changes in examinee speed, which may be related to aberrant responding behaviors. The lognormal RT model is used to derive a procedure for detecting aberrant RT patterns. The method takes the numbers and locations of the change points as parameters in the model to detect multiple change points or multiple aberrant behaviors. Given the change points, the corresponding speed of each segment in the test can be estimated, which enables more accurate inferences about aberrant behaviors. Simulation study results indicate that the proposed procedure can effectively detect simulated aberrant behaviors and estimate change points accurately. The method is applied to data from a high-stakes computerized adaptive test, where its applicability is demonstrated.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.