L. Kronig, Philipp Hörler, Stefane Caseiro, Loïc Grossen, Ricardo Araújo, J. Kneib, M. Bouri
{"title":"Precision control of miniature SCARA robots for multi-object spectrographs","authors":"L. Kronig, Philipp Hörler, Stefane Caseiro, Loïc Grossen, Ricardo Araújo, J. Kneib, M. Bouri","doi":"10.1080/15599612.2020.1829218","DOIUrl":null,"url":null,"abstract":"Abstract Advances in astronomy led to the demand for measuring the spectra of multiple night sky objects simultaneously. Some of these Multi-Object Spectrographs use robotic systems that position optical fibers in the focal plane of the observing telescope. These systems rely on precise fiber placement in order to collect the light spectra of faint stars and galaxies. Here, we present how to design, control, and operate micro SCARA-like robots to position optical fibers to micrometer precision. As an illustrative example, we show the design and performance results of the SDSS-V fiber positioner, which has been build for the Apache Point Observatory and the Las Campanas Observatory with 500 units for each telescope.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"14 1","pages":"53 - 77"},"PeriodicalIF":6.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2020.1829218","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2020.1829218","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract Advances in astronomy led to the demand for measuring the spectra of multiple night sky objects simultaneously. Some of these Multi-Object Spectrographs use robotic systems that position optical fibers in the focal plane of the observing telescope. These systems rely on precise fiber placement in order to collect the light spectra of faint stars and galaxies. Here, we present how to design, control, and operate micro SCARA-like robots to position optical fibers to micrometer precision. As an illustrative example, we show the design and performance results of the SDSS-V fiber positioner, which has been build for the Apache Point Observatory and the Las Campanas Observatory with 500 units for each telescope.
期刊介绍:
International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics.
Topics you can submit include, but are not limited to:
-Adaptive optics-
Optomechanics-
Machine vision, tracking and control-
Image-based micro-/nano- manipulation-
Control engineering for optomechatronics-
Optical metrology-
Optical sensors and light-based actuators-
Optomechatronics for astronomy and space applications-
Optical-based inspection and fault diagnosis-
Micro-/nano- optomechanical systems (MOEMS)-
Optofluidics-
Optical assembly and packaging-
Optical and vision-based manufacturing, processes, monitoring, and control-
Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)