{"title":"Discussion of “Co-citation and Co-authorship Networks of Statisticians”","authors":"J. Loyal, Yuguo Chen","doi":"10.1080/07350015.2022.2044828","DOIUrl":null,"url":null,"abstract":"We want to congratulate the authors on a fascinating article containing an insightful analysis and their hard work curating the high-quality co-citation and co-authorship networks. These datasets alone are a valuable contribution to the statistics profes-sion, which will undoubtedly inspire future data science projects and advances in methodology. In fact, we are eager to use these networks in our own classrooms and research. Furthermore, the authors use these networks to tackling exciting questions in network science that go beyond the familiar problems of edge imputation and predicting node labels. In doing so, the authors perform a terrific analysis accompanied by exciting new methodology. This analysis serves as a great first step in understanding these networks, and the ideas initiated in this article will certainly stimulate many further research questions. For how do influence the research Or,","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2044828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We want to congratulate the authors on a fascinating article containing an insightful analysis and their hard work curating the high-quality co-citation and co-authorship networks. These datasets alone are a valuable contribution to the statistics profes-sion, which will undoubtedly inspire future data science projects and advances in methodology. In fact, we are eager to use these networks in our own classrooms and research. Furthermore, the authors use these networks to tackling exciting questions in network science that go beyond the familiar problems of edge imputation and predicting node labels. In doing so, the authors perform a terrific analysis accompanied by exciting new methodology. This analysis serves as a great first step in understanding these networks, and the ideas initiated in this article will certainly stimulate many further research questions. For how do influence the research Or,