Houari Boudjella, Ahmed Abi Ayad, T. Rouibah, Benyekhlef Larouci, Thamer A. H. Alghamdi, A. Althobaiti, S. Ghoneim, Abdelkader Si Tayeb
{"title":"Magnetic field evaluation around 400 KV underground power cable under harmonics effects","authors":"Houari Boudjella, Ahmed Abi Ayad, T. Rouibah, Benyekhlef Larouci, Thamer A. H. Alghamdi, A. Althobaiti, S. Ghoneim, Abdelkader Si Tayeb","doi":"10.29354/diag/150068","DOIUrl":null,"url":null,"abstract":"Power lines or underground power cables generate electromagnetic interaction with other objects near to them. This study evaluates the magnetic field emitted by underground extra high voltage cables. The presented work aims to show a numerical simulation of the magnetic field of a buried 400 kV underground power line, which is used as a novel prototype in several countries at a short distance. The underground power cable study, in the presence of the current harmonics at different positions, with time variation by finite element resolution, using Comsol Multiphysics with Matlab software in two dimensions. The simulation results illustrate the magnetic flux density variation-in terms of amplitude and distribution as a function of different actual harmonics rates. The underground cable performance and magnetic field have affected by the harmonics effects. The maximum magnetic induction levels generated by significant harmonics are superior to the limits recommended by the international standard norms. In this paper, shielding has been used as an appropriate remedy to attenuate the magnetic field.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/150068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Power lines or underground power cables generate electromagnetic interaction with other objects near to them. This study evaluates the magnetic field emitted by underground extra high voltage cables. The presented work aims to show a numerical simulation of the magnetic field of a buried 400 kV underground power line, which is used as a novel prototype in several countries at a short distance. The underground power cable study, in the presence of the current harmonics at different positions, with time variation by finite element resolution, using Comsol Multiphysics with Matlab software in two dimensions. The simulation results illustrate the magnetic flux density variation-in terms of amplitude and distribution as a function of different actual harmonics rates. The underground cable performance and magnetic field have affected by the harmonics effects. The maximum magnetic induction levels generated by significant harmonics are superior to the limits recommended by the international standard norms. In this paper, shielding has been used as an appropriate remedy to attenuate the magnetic field.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.