A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation

Andrés F Jaramillo-Rueda, Laura Y Vargas-Pacheco, Carlos A. Fajardo
{"title":"A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation","authors":"Andrés F Jaramillo-Rueda, Laura Y Vargas-Pacheco, Carlos A. Fajardo","doi":"10.17230/ingciencia.16.32.6","DOIUrl":null,"url":null,"abstract":"Atrial Fibrillation is a common cardiac arrhythmia, which is characterized by an abnormal heartbeat rhythm that can be life-threatening. Recently, researchers have proposed several Convolutional Neural Networks (CNNs) to detect Atrial Fibrillation. CNNs have high requirements on computing and memory resources, which usually demand the use of High Performance Computing (eg, GPUs). This high energy demand is a challenge for portable devices. Therefore, efficient hardware implementations are required. We propose a computational architecture for the inference of a Quantized Convolutional Neural Network (Q-CNN) that allows the detection of the Atrial Fibrillation (AF). The architecture exploits data-level parallelism by incorporating SIMD-based vector units, which is optimized in terms of computation and storage and also optimized to perform both the convolutional and fully connected layers. The computational architecture was implemented and tested in a Xilinx Artix-7 FPGA. We present 1 Universidad Industrial de Santander, af_jaramillo@outlook.com , Bucaramanga, Colombia. 2 Universidad Industrial de Santander, lauvapacheco@gmail.com, Bucaramanga, Colombia. 3 Universidad Industrial de Santander, cafajar@uis.edu.co, Bucaramanga, Colombia. Universidad EAFIT 135| A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation the experimental results regarding the quantization process in a different number of bits, hardware resources, and precision. The results show an accuracy of 94% accuracy for 22-bits. This work aims to be the basis for the future implementation of a portable, low-cost, and high-reliability device for the diagnosis of Atrial Fibrillation.","PeriodicalId":30405,"journal":{"name":"Ingenieria y Ciencia","volume":"16 1","pages":"135-149"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria y Ciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17230/ingciencia.16.32.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Atrial Fibrillation is a common cardiac arrhythmia, which is characterized by an abnormal heartbeat rhythm that can be life-threatening. Recently, researchers have proposed several Convolutional Neural Networks (CNNs) to detect Atrial Fibrillation. CNNs have high requirements on computing and memory resources, which usually demand the use of High Performance Computing (eg, GPUs). This high energy demand is a challenge for portable devices. Therefore, efficient hardware implementations are required. We propose a computational architecture for the inference of a Quantized Convolutional Neural Network (Q-CNN) that allows the detection of the Atrial Fibrillation (AF). The architecture exploits data-level parallelism by incorporating SIMD-based vector units, which is optimized in terms of computation and storage and also optimized to perform both the convolutional and fully connected layers. The computational architecture was implemented and tested in a Xilinx Artix-7 FPGA. We present 1 Universidad Industrial de Santander, af_jaramillo@outlook.com , Bucaramanga, Colombia. 2 Universidad Industrial de Santander, lauvapacheco@gmail.com, Bucaramanga, Colombia. 3 Universidad Industrial de Santander, cafajar@uis.edu.co, Bucaramanga, Colombia. Universidad EAFIT 135| A Computational Architecture for Inference of a Quantized-CNN for Detecting Atrial Fibrillation the experimental results regarding the quantization process in a different number of bits, hardware resources, and precision. The results show an accuracy of 94% accuracy for 22-bits. This work aims to be the basis for the future implementation of a portable, low-cost, and high-reliability device for the diagnosis of Atrial Fibrillation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于房颤检测的量化cnn推理计算体系
心房颤动是一种常见的心律失常,其特征是心律失常可能危及生命。最近,研究人员提出了几种卷积神经网络(CNNs)来检测心房颤动。细胞神经网络对计算和内存资源有很高的要求,通常需要使用高性能计算(如GPU)。这种高能量需求对便携式设备来说是一个挑战。因此,需要高效的硬件实现。我们提出了一种用于量化卷积神经网络(Q-CNN)推断的计算架构,该架构允许检测心房颤动(AF)。该体系结构通过结合基于SIMD的矢量单元来利用数据级并行性,该矢量单元在计算和存储方面进行了优化,还进行了优化以执行卷积层和完全连接层。该计算体系结构在Xilinx Artix-7 FPGA中实现并测试。我们展示了1所桑坦德工业大学,af_jaramillo@outlook.com,哥伦比亚布卡拉曼加。2桑坦德工业大学,lauvapacheco@gmail.com,哥伦比亚布卡拉曼加。3桑坦德工业大学,cafajar@uis.edu.co,哥伦比亚布卡拉曼加。Universidad EAFIT 135 |用于检测心房颤动的量化CNN推断的计算架构不同位数、硬件资源和精度的量化过程的实验结果。结果表明,对于22个比特,准确率为94%。这项工作旨在为未来实现一种便携式、低成本、高可靠性的心房颤动诊断设备奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
Aprendizaje profundo para escalas pronósticas en la prescripción a pacientes con riesgo de sangrado gastrointestinal Determinantes del precio de la vivienda nueva en Bogotá para el año 2019: una aproximación a través de un modelo semiparamétrico de regresión espacial Lie Algebra Representation, Conservation Laws and Some Invariant Solutions for a Generalized Emden-Fowler Equation Propuesta de un dispositivo refrigerante con celdas Peltier alimentado con un sistema fotovoltaico independiente: un caso de estudio Experimental Development of Fuzzy Controllers for Thermal and Pneumatic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1