{"title":"New insights into the stratigraphic evolution of southwest Britain: Implications for Triassic salt and hydrocarbon prospectivity","authors":"S. S. Husein, A. Fraser, G. Roberts, R. Bell","doi":"10.1144/petgeo2022-051","DOIUrl":null,"url":null,"abstract":"The discovery of Wytch Farm field in the Wessex Basin, and Kinsale Head field in the North Celtic Sea Basin in the early 1970s, led to exploration interest offshore in the Western Approaches Trough. Despite this activity, little evidence for prospective hydrocarbon resources has been found. To better understand the failures and analyse remaining hydrocarbon potential in this region, we make use of a large collection of new seismic reflection and well data to map Carboniferous to Neogene stratigraphy. The improved seismic imaging has allowed a better interpretation of the hitherto poorly understood, salt-related structures in the South Melville and the Plymouth Bay basins. The implications of the new interpretations for Carnian (Late Triassic), and Carboniferous stratigraphic and geodynamic evolution are assessed and contextualised with regional salt deposition in the Wessex, Bristol, and South Celtic Sea basins. From a petroleum system perspective, the Lias and Carboniferous source rocks are evaluated and modelled to analyse the maturity and evolution of the petroleum systems. We conclude that the Lias is an ineffective petroleum system due to timing and source maturation risk. However, the Triassic salt and associated subcropping faults have produced several possible pre-salt hydrocarbon traps. The traps may be charged from sporadic Mid-Late Carboniferous coal-bearing post-orogenic basins, a petroleum system previously overlooked.\n \n Supplementary material\n : [Appendix showing seismic, well data and petroleum systems boundary conditions. Burial history plots of the petroleum systems modelling scenarios used to generate source rock transformation ratio plots shown in Figs 9 & 10. [Item 1: Spreadsheet with seismic and well data used in the study, and petroleum system modelling input data. Item 2: Raw decompacted burial history plot, and burial history plots of the 3 Lias petroleum systems scenarios]\n https://doi.org/10.6084/m9.figshare.c.6486999\n \n \n Thematic collection:\n This article is part of the UKCS Atlantic Margin collection available at:\n https://www.lyellcollection.org/topic/collections/new-learning-from-exploration-and-development-in-the-ukcs-atlantic-margin\n","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2022-051","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of Wytch Farm field in the Wessex Basin, and Kinsale Head field in the North Celtic Sea Basin in the early 1970s, led to exploration interest offshore in the Western Approaches Trough. Despite this activity, little evidence for prospective hydrocarbon resources has been found. To better understand the failures and analyse remaining hydrocarbon potential in this region, we make use of a large collection of new seismic reflection and well data to map Carboniferous to Neogene stratigraphy. The improved seismic imaging has allowed a better interpretation of the hitherto poorly understood, salt-related structures in the South Melville and the Plymouth Bay basins. The implications of the new interpretations for Carnian (Late Triassic), and Carboniferous stratigraphic and geodynamic evolution are assessed and contextualised with regional salt deposition in the Wessex, Bristol, and South Celtic Sea basins. From a petroleum system perspective, the Lias and Carboniferous source rocks are evaluated and modelled to analyse the maturity and evolution of the petroleum systems. We conclude that the Lias is an ineffective petroleum system due to timing and source maturation risk. However, the Triassic salt and associated subcropping faults have produced several possible pre-salt hydrocarbon traps. The traps may be charged from sporadic Mid-Late Carboniferous coal-bearing post-orogenic basins, a petroleum system previously overlooked.
Supplementary material
: [Appendix showing seismic, well data and petroleum systems boundary conditions. Burial history plots of the petroleum systems modelling scenarios used to generate source rock transformation ratio plots shown in Figs 9 & 10. [Item 1: Spreadsheet with seismic and well data used in the study, and petroleum system modelling input data. Item 2: Raw decompacted burial history plot, and burial history plots of the 3 Lias petroleum systems scenarios]
https://doi.org/10.6084/m9.figshare.c.6486999
Thematic collection:
This article is part of the UKCS Atlantic Margin collection available at:
https://www.lyellcollection.org/topic/collections/new-learning-from-exploration-and-development-in-the-ukcs-atlantic-margin
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.