Effectiveness of an evaporative charcoal cooler for the postharvest preservation of tomatoes and kales

Q3 Agricultural and Biological Sciences Research in Agricultural Engineering Pub Date : 2020-06-29 DOI:10.17221/52/2019-rae
E. Ronoh, C. Kanali, S. Ndirangu
{"title":"Effectiveness of an evaporative charcoal cooler for the postharvest preservation of tomatoes and kales","authors":"E. Ronoh, C. Kanali, S. Ndirangu","doi":"10.17221/52/2019-rae","DOIUrl":null,"url":null,"abstract":"The preservation of fresh produce can provide rural households with better diets all-year round and income by reducing their deterioration. Promotion of low-cost temporary storage technologies requires evidence of their effectiveness to attain conducive conditions. Therefore, this study was conducted to assess the effectiveness of an evaporative charcoal cooler for the preservation of tomatoes and kales. The cooler microclimate and outdoor conditions were investigated by measuring the air temperature and relative humidity. During the study period, the maximum temperature difference between the cooler and the outdoors was found to be 9.2 °C while the maximum relative humidity difference was 36.8%. Due to the presence of light rain and, consequently, low solar radiation, the temperature and relative humidity differences were significantly reduced. Despite the light rain, the cooler still registered a maximum relative humidity of 83.5% and a maximum cooling efficiency of 91.5%. Overall, the cooler demonstrated promising results in terms of favourable microclimate conditions, the shelf-life and colour changes for tomatoes and kales.","PeriodicalId":20906,"journal":{"name":"Research in Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17221/52/2019-rae","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/52/2019-rae","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

The preservation of fresh produce can provide rural households with better diets all-year round and income by reducing their deterioration. Promotion of low-cost temporary storage technologies requires evidence of their effectiveness to attain conducive conditions. Therefore, this study was conducted to assess the effectiveness of an evaporative charcoal cooler for the preservation of tomatoes and kales. The cooler microclimate and outdoor conditions were investigated by measuring the air temperature and relative humidity. During the study period, the maximum temperature difference between the cooler and the outdoors was found to be 9.2 °C while the maximum relative humidity difference was 36.8%. Due to the presence of light rain and, consequently, low solar radiation, the temperature and relative humidity differences were significantly reduced. Despite the light rain, the cooler still registered a maximum relative humidity of 83.5% and a maximum cooling efficiency of 91.5%. Overall, the cooler demonstrated promising results in terms of favourable microclimate conditions, the shelf-life and colour changes for tomatoes and kales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒸发炭冷却器对番茄和羽衣甘蓝采后保鲜的效果
新鲜农产品的保存可以减少其变质,从而为农村家庭提供全年更好的饮食和收入。推广低成本临时储存技术需要证明其有效性,以获得有利的条件。因此,本研究旨在评估蒸发式木炭冷却器对保存西红柿和羽衣甘蓝的有效性。通过测量空气温度和相对湿度,研究了较冷的小气候和室外条件。研究期间,冷却器与室外最大温差为9.2°C,最大相对湿度差为36.8%。由于小雨的存在和低太阳辐射,温度和相对湿度的差异显著减小。尽管下了小雨,冷却器的最大相对湿度仍为83.5%,最大冷却效率为91.5%。总的来说,在有利的小气候条件、番茄和羽衣甘蓝的保质期和颜色变化方面,冷却器显示了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research in Agricultural Engineering
Research in Agricultural Engineering Engineering, agriculture-
CiteScore
1.40
自引率
0.00%
发文量
21
审稿时长
24 weeks
期刊介绍: Original scientific papers, short communications, information, and studies covering all areas of agricultural engineering, agricultural technology, processing of agricultural products, countryside buildings and related problems from ecology, energetics, economy, ergonomy and applied physics and chemistry. Papers are published in English.
期刊最新文献
The effect of parameter adjustment in sago palm classification-based convolutional neural network (CNN) model Influence of soil tillage technology on tillage erosion Fabrication and performance test of a multipurpose ohmic heating apparatus with a real-time data logging system based on low-cost sensors Enhancing melon yield through a low-cost drip irrigation control system with time and soil sensor Reconstructed military machine for unique field testing of agricultural machinery capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1