Numerical Solutions for Laminar Boundary Layer Nanofluid Flow along with a Moving Cylinder with Heat Generation, Thermal Radiation, and Slip Parameter

Q3 Mathematics Abstract and Applied Analysis Pub Date : 2021-12-01 DOI:10.1155/2021/8288534
T. M. Agbaje, G. Makanda
{"title":"Numerical Solutions for Laminar Boundary Layer Nanofluid Flow along with a Moving Cylinder with Heat Generation, Thermal Radiation, and Slip Parameter","authors":"T. M. Agbaje, G. Makanda","doi":"10.1155/2021/8288534","DOIUrl":null,"url":null,"abstract":"The investigation of the numerical solution of the laminar boundary layer flow along with a moving cylinder with heat generation, thermal radiation, and surface slip effect is carried out. The fluid mathematical model developed from the Navier-Stokes equations resulted in a system of partial differential equations which were then solved by the multidomain bivariate spectral quasilinearization method (MD-BSQLM). The results show that increasing the velocity slip factor results in an enhanced increase in velocity and temperature profiles. Increasing the heat generation parameter increases temperature profiles; increasing the radiation parameter and the Eckert numbers both increase the temperature profiles. The concentration profiles decrease with increasing radial coordinate. Increasing the Brownian motion and the thermophoresis parameter both destabilizes the concentration profiles. Increasing the Schmidt number reduces temperature profiles. The effect of increasing selected parameters: the velocity slip, Brownian motion, and the radiation parameter on all residual errors show that these errors do not deteriorate. This shows that the MD-BSQLM is very accurate and robust. The method was compared with similar results in the literature and was found to be in excellent agreement.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/8288534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The investigation of the numerical solution of the laminar boundary layer flow along with a moving cylinder with heat generation, thermal radiation, and surface slip effect is carried out. The fluid mathematical model developed from the Navier-Stokes equations resulted in a system of partial differential equations which were then solved by the multidomain bivariate spectral quasilinearization method (MD-BSQLM). The results show that increasing the velocity slip factor results in an enhanced increase in velocity and temperature profiles. Increasing the heat generation parameter increases temperature profiles; increasing the radiation parameter and the Eckert numbers both increase the temperature profiles. The concentration profiles decrease with increasing radial coordinate. Increasing the Brownian motion and the thermophoresis parameter both destabilizes the concentration profiles. Increasing the Schmidt number reduces temperature profiles. The effect of increasing selected parameters: the velocity slip, Brownian motion, and the radiation parameter on all residual errors show that these errors do not deteriorate. This shows that the MD-BSQLM is very accurate and robust. The method was compared with similar results in the literature and was found to be in excellent agreement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑生热、热辐射和滑移参数的层流边界层纳米流体沿移动圆柱体流动的数值解
研究了带热源、热辐射和表面滑移效应的层流边界层沿动圆柱流动的数值解。由Navier-Stokes方程建立的流体数学模型得到一个偏微分方程组,然后用多域二元谱拟线性化方法(MD-BSQLM)求解。结果表明,速度滑移系数的增大会导致速度和温度剖面的增大。增加产热参数会增加温度分布;增加辐射参数和埃克特数都会增加温度分布。浓度分布随径向坐标的增大而减小。增加布朗运动和热泳参数都使浓度分布不稳定。增加施密特数可以降低温度分布。增加速度滑移、布朗运动和辐射参数对所有剩余误差的影响表明,这些误差没有恶化。这表明MD-BSQLM具有很高的准确性和鲁棒性。将该方法与文献中类似的结果进行了比较,发现两者非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
期刊最新文献
Multiplicity of Solutions for a Class of Kirchhoff–Poisson Type Problem Frequently Hypercyclic Semigroup Generated by Some Partial Differential Equations with Delay Operator The Solvability and Explicit Solutions of Singular Integral–Differential Equations with Reflection Efficient Numerical Method for Solving a Quadratic Riccati Differential Equation A Complex Dynamic of an Eco-Epidemiological Mathematical Model with Migration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1