Information Hiding Scheme Based on Quantum Generative Adversarial Network

Jia Luo, Rigui Zhou, Yaochong Li, Guangzhong Liu
{"title":"Information Hiding Scheme Based on Quantum Generative Adversarial Network","authors":"Jia Luo, Rigui Zhou, Yaochong Li, Guangzhong Liu","doi":"10.3724/sp.j.1089.2021.18617","DOIUrl":null,"url":null,"abstract":": Due to the insecurity of quantum image information hiding technology in the face of statisti-cal-based steganalysis algorithm detection, an information hiding scheme based on quantum generative adversarial network (QGAN) is proposed. This scheme first uses the mapping rules to map the secret information into the single qubit gate to prepare for the input state of the parameterized quantum circuit of the gen-erator G . Then the stego quantum image is generated by the generating circuit in QGAN. Finally, the sample data obtained by measuring the stego image and the real data are used as the input of the discriminator D . The iterative optimization is performed so that G can obtain a stego image close to the target image. The ex-perimental results show that proposed scheme can generate stego images that fit the target image distribution well and achieve the non-embedded hiding of information.","PeriodicalId":52442,"journal":{"name":"计算机辅助设计与图形学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机辅助设计与图形学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/sp.j.1089.2021.18617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

: Due to the insecurity of quantum image information hiding technology in the face of statisti-cal-based steganalysis algorithm detection, an information hiding scheme based on quantum generative adversarial network (QGAN) is proposed. This scheme first uses the mapping rules to map the secret information into the single qubit gate to prepare for the input state of the parameterized quantum circuit of the gen-erator G . Then the stego quantum image is generated by the generating circuit in QGAN. Finally, the sample data obtained by measuring the stego image and the real data are used as the input of the discriminator D . The iterative optimization is performed so that G can obtain a stego image close to the target image. The ex-perimental results show that proposed scheme can generate stego images that fit the target image distribution well and achieve the non-embedded hiding of information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于量子生成对抗网络的信息隐藏方案
针对量子图像信息隐藏技术在面对基于统计量的隐写算法检测时存在的不安全性,提出了一种基于量子生成对抗网络(QGAN)的信息隐藏方案。该方案首先利用映射规则将秘密信息映射到单量子比特门,为发生器G的参数化量子电路的输入状态做准备。然后通过QGAN中的生成电路生成隐存量子图像。最后,将测量隐写图像得到的样本数据和真实数据作为鉴别器D的输入。进行迭代优化,使G能得到接近目标图像的隐进图像。实验结果表明,该方法能够生成符合目标图像分布的隐写图像,实现了信息的非嵌入隐藏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
计算机辅助设计与图形学学报
计算机辅助设计与图形学学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6833
期刊介绍:
期刊最新文献
Error-Controlled Data Reduction Approach for Large-Scale Structured Datasets A Survey on the Visual Analytics for Data Ranking Element Layout Prediction with Sequential Operation Data Interactive Visual Analysis Engine for High-Performance CAE Simulations 3D Point Cloud Restoration via Deep Learning: A Comprehensive Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1