Influence of advanced wound matrices on observed vacuum pressure during simulated negative pressure wound therapy.

R. W. Veale, Tarek Kollmetz, Navid Taghavi, Claudia G. Duston-Fursman, Matthew T. Beeson, Dorrin Asefi, Henry D Chittock, A. Vikranth, S. Dowling, S. Dempsey, H. Rose, Isaac Mason, B. C. May
{"title":"Influence of advanced wound matrices on observed vacuum pressure during simulated negative pressure wound therapy.","authors":"R. W. Veale, Tarek Kollmetz, Navid Taghavi, Claudia G. Duston-Fursman, Matthew T. Beeson, Dorrin Asefi, Henry D Chittock, A. Vikranth, S. Dowling, S. Dempsey, H. Rose, Isaac Mason, B. C. May","doi":"10.2139/ssrn.4264243","DOIUrl":null,"url":null,"abstract":"Biomaterials and negative pressure wound therapy (NPWT) are treatment modalities regularly used together to accelerate soft-tissue regeneration. This study evaluated the impact of the design and composition of commercially available collagen-based matrices on the observed vacuum pressure delivered under NPWT using a custom test apparatus. Specifically, testing compared the effect of the commercial products; ovine forestomach matrix (OFM), collagen/oxidized regenerated cellulose (collagen/ORC) and a collagen-based dressing (CWD) on the observed vacuum pressure. OFM resulted in an ∼50% reduction in the observed target vacuum pressure at 75 mmHg and 125 mmHg, however, this effect was mitigated to a ∼0% reduction when fenestrations were introduced into the matrix. Both collagen/ORC and CWD reduced the observed vacuum pressure at 125 mmHg (∼15% and ∼50%, respectively), and this was more dramatic when a lower vacuum pressure of 75 mmHg was delivered (∼20% and ∼75%, respectively). The reduced performance of the reconstituted collagen products is thought to result from the gelling properties of these products that may cause occlusion of the delivered vacuum to the wound bed. These findings highlight the importance of in vitro testing to establish the impact of adjunctive therapies on NPWT, where effective delivery of vacuum pressure is paramount to the efficacy of this therapy.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105620"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4264243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomaterials and negative pressure wound therapy (NPWT) are treatment modalities regularly used together to accelerate soft-tissue regeneration. This study evaluated the impact of the design and composition of commercially available collagen-based matrices on the observed vacuum pressure delivered under NPWT using a custom test apparatus. Specifically, testing compared the effect of the commercial products; ovine forestomach matrix (OFM), collagen/oxidized regenerated cellulose (collagen/ORC) and a collagen-based dressing (CWD) on the observed vacuum pressure. OFM resulted in an ∼50% reduction in the observed target vacuum pressure at 75 mmHg and 125 mmHg, however, this effect was mitigated to a ∼0% reduction when fenestrations were introduced into the matrix. Both collagen/ORC and CWD reduced the observed vacuum pressure at 125 mmHg (∼15% and ∼50%, respectively), and this was more dramatic when a lower vacuum pressure of 75 mmHg was delivered (∼20% and ∼75%, respectively). The reduced performance of the reconstituted collagen products is thought to result from the gelling properties of these products that may cause occlusion of the delivered vacuum to the wound bed. These findings highlight the importance of in vitro testing to establish the impact of adjunctive therapies on NPWT, where effective delivery of vacuum pressure is paramount to the efficacy of this therapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进的伤口基质对模拟负压伤口治疗过程中观察到的真空压力的影响。
生物材料和负压创伤治疗(NPWT)是一种经常结合使用的治疗模式,用于加速软组织再生。本研究评估了市售胶原基基质的设计和组成对使用定制测试设备在NPWT下递送的观察到的真空压力的影响。具体来说,测试比较了商业产品的效果;绵羊前胃基质(OFM)、胶原/氧化再生纤维素(胶原/ORC)和基于胶原的敷料(CWD)。OFM导致在75毫米汞柱和125毫米汞柱时观察到的目标真空压力降低了~50%,然而,当开窗进入基质时,这种影响被减轻到降低了~0%。胶原蛋白/ORC和CWD都将观察到的真空压力降低到125毫米汞柱(分别为~15%和~50%),当提供75毫米汞柱的较低真空压力时(分别为~20%和~75%),这一点更为显著。重构胶原产品的性能降低被认为是由于这些产品的胶凝特性造成的,这些特性可能导致输送到伤口床的真空被阻塞。这些发现强调了体外测试的重要性,以确定辅助疗法对NPWT的影响,其中真空压力的有效递送对该疗法的疗效至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to "Elastic constants of biogenic calcium carbonate" (155), 106570. Editorial Board An improved trabecular bone model based on Voronoi tessellation. Patient-specific finite element analysis of human corneal lenticules: An experimental and numerical study. Multistep deformation of helical fiber electrospun scaffold toward cardiac patches development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1