{"title":"Improved Well-Posedness for the Triple-Deck and Related Models via Concavity","authors":"David Gerard-Varet, Sameer Iyer, Yasunori Maekawa","doi":"10.1007/s00021-023-00809-4","DOIUrl":null,"url":null,"abstract":"<div><p>We establish linearized well-posedness of the Triple-Deck system in Gevrey-<span>\\(\\frac{3}{2}\\)</span> regularity in the tangential variable, under concavity assumptions on the background flow. Due to the recent result (Dietert and Gerard-Varet in SIAM J Math Anal, 2021), one cannot expect a generic improvement of the result of Iyer and Vicol (Commun Pure Appl Math 74(8):1641–1684, 2021) to a weaker regularity class than real analyticity. Our approach exploits two ingredients, through an analysis of space-time modes on the Fourier–Laplace side: (i) stability estimates at the vorticity level, that involve the concavity assumption and a subtle iterative scheme adapted from Gerard-Varet et al. (Optimal Prandtl expansion around concave boundary layer, 2020. arXiv:2005.05022) (ii) smoothing properties of the Benjamin–Ono like equation satisfied by the Triple-Deck flow at infinity. Interestingly, our treatment of the vorticity equation also adapts to the so-called hydrostatic Navier–Stokes equations: we show for this system a similar Gevrey-<span>\\(\\frac{3}{2}\\)</span> linear well-posedness result for concave data, improving at the linear level the recent work (Gérard-Varet et al. in Anal PDE 13(5):1417–1455, 2020).\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00809-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
We establish linearized well-posedness of the Triple-Deck system in Gevrey-\(\frac{3}{2}\) regularity in the tangential variable, under concavity assumptions on the background flow. Due to the recent result (Dietert and Gerard-Varet in SIAM J Math Anal, 2021), one cannot expect a generic improvement of the result of Iyer and Vicol (Commun Pure Appl Math 74(8):1641–1684, 2021) to a weaker regularity class than real analyticity. Our approach exploits two ingredients, through an analysis of space-time modes on the Fourier–Laplace side: (i) stability estimates at the vorticity level, that involve the concavity assumption and a subtle iterative scheme adapted from Gerard-Varet et al. (Optimal Prandtl expansion around concave boundary layer, 2020. arXiv:2005.05022) (ii) smoothing properties of the Benjamin–Ono like equation satisfied by the Triple-Deck flow at infinity. Interestingly, our treatment of the vorticity equation also adapts to the so-called hydrostatic Navier–Stokes equations: we show for this system a similar Gevrey-\(\frac{3}{2}\) linear well-posedness result for concave data, improving at the linear level the recent work (Gérard-Varet et al. in Anal PDE 13(5):1417–1455, 2020).
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.