Manipulator Control Based on Adaptive RBF Network Approximation

Xindi Yuan, Mengshan Li, Qiusheng Li
{"title":"Manipulator Control Based on Adaptive RBF Network Approximation","authors":"Xindi Yuan, Mengshan Li, Qiusheng Li","doi":"10.4018/ijitsa.326751","DOIUrl":null,"url":null,"abstract":"With the popularization of intelligent manufacturing, manipulator has found ever wider application in various industries. A manipulator requires a real-time and fast control algorithm in order to improve the accuracy in all kinds of precise operations. This paper proposes an algorithm based on adaptive radial basis function (RBF) for approximating the parameters of the manipulator, and the adaptive equations are designed to automatically adjust the weight of RBF. Proportional integral (PI) robust based on dynamic error tracking is used in controller to reduce the steady state errors and enhance the anti-interference performance of the system. The global asymptotic stability of the system is demonstrated by defining an integraltype Lyapunov function. Finally, MATLAB is used to simulate the angular positions tracking and angular velocities tracking of the double joints manipulator. The results show that the manipulator can track the ideal output signal quickly and accurately and has good anti-interference performance.","PeriodicalId":52019,"journal":{"name":"International Journal of Information Technologies and Systems Approach","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technologies and Systems Approach","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitsa.326751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

With the popularization of intelligent manufacturing, manipulator has found ever wider application in various industries. A manipulator requires a real-time and fast control algorithm in order to improve the accuracy in all kinds of precise operations. This paper proposes an algorithm based on adaptive radial basis function (RBF) for approximating the parameters of the manipulator, and the adaptive equations are designed to automatically adjust the weight of RBF. Proportional integral (PI) robust based on dynamic error tracking is used in controller to reduce the steady state errors and enhance the anti-interference performance of the system. The global asymptotic stability of the system is demonstrated by defining an integraltype Lyapunov function. Finally, MATLAB is used to simulate the angular positions tracking and angular velocities tracking of the double joints manipulator. The results show that the manipulator can track the ideal output signal quickly and accurately and has good anti-interference performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应RBF网络逼近的机械手控制
随着智能制造的普及,机械手在各个行业的应用越来越广泛。在各种精密操作中,为了提高机械手的精度,需要一种实时、快速的控制算法。提出了一种基于自适应径向基函数(RBF)的机械臂参数逼近算法,设计了自适应方程,实现了RBF权值的自动调整。在控制器中采用基于动态误差跟踪的比例积分鲁棒控制,以减小系统的稳态误差,提高系统的抗干扰性能。通过定义一个积分型Lyapunov函数,证明了系统的全局渐近稳定性。最后,利用MATLAB对双关节机械手的角位置跟踪和角速度跟踪进行仿真。结果表明,该机械手能够快速准确地跟踪理想输出信号,并具有良好的抗干扰性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
12.50%
发文量
29
期刊最新文献
Research on Machine Instrument Panel Digit Character Segmentation A GCN- and Deep Biaffine Attention-Based Classification Model for Course Review Sentiment Estimation and Convergence Analysis of Traffic Structure Efficiency Based on an Undesirable Epsilon-Based Measure Model Experiment Study and Industrial Application of Slotted Bluff-Body Burner Applied to Deep Peak Regulation Enterprise Collaboration Optimization in China Based on Supply Chain Resilience Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1