G. Bosc, Philip Tan, Jean-François Boulicaut, Chedy Raïssi, Mehdi Kaytoue-Uberall
{"title":"A Pattern Mining Approach to Study Strategy Balance in RTS Games","authors":"G. Bosc, Philip Tan, Jean-François Boulicaut, Chedy Raïssi, Mehdi Kaytoue-Uberall","doi":"10.1109/TCIAIG.2015.2511819","DOIUrl":null,"url":null,"abstract":"Whereas purest strategic games such as Go and Chess seem timeless, the lifetime of a video game is short, influenced by popular culture, trends, boredom, and technological innovations. Even the important budget and developments allocated by editors cannot guarantee a timeless success. Instead, novelties and corrections are proposed to extend an inevitably bounded lifetime. Novelties can unexpectedly break the balance of a game, as players can discover unbalanced strategies that developers did not take into account. In the new context of electronic sports, an important challenge is to be able to detect game balance issues. In this paper, we consider real-time strategy (RTS) games and present an efficient pattern mining algorithm as a basic tool for game balance designers that enables one to search for unbalanced strategies in historical data through a knowledge discovery in databases (KDD) process. We experiment with our algorithm on StarCraft II historical data, played professionally as an electronic sport.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"9 1","pages":"123-132"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2015.2511819","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2015.2511819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 16
Abstract
Whereas purest strategic games such as Go and Chess seem timeless, the lifetime of a video game is short, influenced by popular culture, trends, boredom, and technological innovations. Even the important budget and developments allocated by editors cannot guarantee a timeless success. Instead, novelties and corrections are proposed to extend an inevitably bounded lifetime. Novelties can unexpectedly break the balance of a game, as players can discover unbalanced strategies that developers did not take into account. In the new context of electronic sports, an important challenge is to be able to detect game balance issues. In this paper, we consider real-time strategy (RTS) games and present an efficient pattern mining algorithm as a basic tool for game balance designers that enables one to search for unbalanced strategies in historical data through a knowledge discovery in databases (KDD) process. We experiment with our algorithm on StarCraft II historical data, played professionally as an electronic sport.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.