Large-eddy simulation of a ducted propeller in crashback

IF 2.8 Q2 MECHANICS Flow (Cambridge, England) Pub Date : 2022-02-02 DOI:10.1017/flo.2021.18
T. Kroll, K. Mahesh
{"title":"Large-eddy simulation of a ducted propeller in crashback","authors":"T. Kroll, K. Mahesh","doi":"10.1017/flo.2021.18","DOIUrl":null,"url":null,"abstract":"Abstract Large-eddy simulation (LES) using an unstructured overset numerical method is performed to study the flow around a ducted marine propeller for the highly unsteady off-design condition called crashback. Known as one of the most challenging propeller states to analyse, the propeller rotates in the reverse direction to yield negative thrust while the vehicle is still in forward motion. The LES results for the marine propeller David Taylor Model Basin 4381 with a neutrally loaded duct are validated against experiments, showing good agreement. The simulations are performed at Reynolds number of 561 000 and an advance ratio $J=-0.82$. The flow field around the different components (duct, rotor blades and stator blades) and their impact on the unsteady loading are examined. The side-force coefficient $K_S$ is mostly generated from the duct surface, consistent with experiments. The majority of the thrust and torque coefficients $K_T$ and $K_Q$ arise from the rotor blades. A prominent contribution to $K_Q$ is also produced from the stator blades. Tip-leakage flow between the rotor blade tips and duct surface is shown to play a major role in the local unsteady loads on the rotor blades and duct. The physical mechanisms responsible for the overall unsteady loads and large side-force production are identified as globally, the vortex ring and locally, leading-edge separation as well as tip-leakage flow which forms blade-local recirculation zones.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2021.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Large-eddy simulation (LES) using an unstructured overset numerical method is performed to study the flow around a ducted marine propeller for the highly unsteady off-design condition called crashback. Known as one of the most challenging propeller states to analyse, the propeller rotates in the reverse direction to yield negative thrust while the vehicle is still in forward motion. The LES results for the marine propeller David Taylor Model Basin 4381 with a neutrally loaded duct are validated against experiments, showing good agreement. The simulations are performed at Reynolds number of 561 000 and an advance ratio $J=-0.82$. The flow field around the different components (duct, rotor blades and stator blades) and their impact on the unsteady loading are examined. The side-force coefficient $K_S$ is mostly generated from the duct surface, consistent with experiments. The majority of the thrust and torque coefficients $K_T$ and $K_Q$ arise from the rotor blades. A prominent contribution to $K_Q$ is also produced from the stator blades. Tip-leakage flow between the rotor blade tips and duct surface is shown to play a major role in the local unsteady loads on the rotor blades and duct. The physical mechanisms responsible for the overall unsteady loads and large side-force production are identified as globally, the vortex ring and locally, leading-edge separation as well as tip-leakage flow which forms blade-local recirculation zones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
导管螺旋桨在后冲中的大涡模拟
摘要采用非结构超调数值方法进行了大涡模拟(LES),研究了船舶导管螺旋桨高度非定常回撞工况下的流场。被称为最具挑战性的螺旋桨状态分析之一,螺旋桨在反向旋转产生负推力,而车辆仍在向前运动。对David Taylor模型盆4381船用螺旋桨中载风道的LES计算结果与实验结果进行了验证,结果吻合较好。在雷诺数为561 000、超前比J=-0.82时进行了模拟。研究了不同部件(风道、动叶和静叶)周围的流场及其对非定常载荷的影响。侧力系数$K_S$主要来源于风管表面,与实验结果一致。大部分推力和扭矩系数$K_T$和$K_Q$来自旋翼叶片。对K_Q的显著贡献也来自定子叶片。研究表明,叶尖与风道表面之间的叶尖泄漏流对转子叶片和风道的局部非定常载荷起主要作用。总体非定常载荷和大侧力产生的物理机制确定为全局、涡环和局部、前缘分离以及形成叶片局部再循环区的尖端泄漏流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Benefits of controlled inclination for contactless transport by squeeze-film levitation Investigating cohesive sediment dynamics in open waters via grain-resolved simulations Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies Competing effects of buoyancy-driven and electrothermal flows for Joule heating-induced transport in microchannels Effects of prey capture on the swimming and feeding performance of choanoflagellates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1