K. Goharrizi, S. Karami, M. Hamblin, M. Momeni, T. Basaki, M. Dehnavi, M. Nazari
{"title":"Transcriptomic and proteomic profile approaches toward drought and salinity stresses","authors":"K. Goharrizi, S. Karami, M. Hamblin, M. Momeni, T. Basaki, M. Dehnavi, M. Nazari","doi":"10.32615/bp.2022.035","DOIUrl":null,"url":null,"abstract":"Drought and salinity, which can alter the water balance, disrupt the ionic equilibrium, and create reactive oxygen species (ROS), are capable of destroying plant tissues. In this study, transcriptomics, proteomics, and metabolomics have been used to elucidate various abiotic stress responses. In transcriptional signaling pathways, abscisic acid (ABA) is one of the plant phytohormones that regulate the stress response. On the other hand, several regulons and factors of transcription contributed in the reaction to osmotic stresses, as well as in ABA-dependent/independent signaling pathways. However, the findings display that intricate molecular reaction of plants under stress conditions may be controlled by complicated regulative networks of gene expression and signal transduction, as well as by the interaction between them. From the point of view of proteomics, protein modifications in response to stress can be considered as a molecular tool to improve the resistance of plants to environmental stresses. These studies have provided new information about the significance of several gene and protein networks involved in the response of plants to salinity and drought, and the induction of tolerance. Moreover, identifying the crucial pathways which are involved in salinity and drought resistance can open doors for the establishment of commercial-resistant crop cultivars, and might be very useful in the next-generation crop breeding strategies to produce plants with salinity and drought-resistant traits.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/bp.2022.035","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought and salinity, which can alter the water balance, disrupt the ionic equilibrium, and create reactive oxygen species (ROS), are capable of destroying plant tissues. In this study, transcriptomics, proteomics, and metabolomics have been used to elucidate various abiotic stress responses. In transcriptional signaling pathways, abscisic acid (ABA) is one of the plant phytohormones that regulate the stress response. On the other hand, several regulons and factors of transcription contributed in the reaction to osmotic stresses, as well as in ABA-dependent/independent signaling pathways. However, the findings display that intricate molecular reaction of plants under stress conditions may be controlled by complicated regulative networks of gene expression and signal transduction, as well as by the interaction between them. From the point of view of proteomics, protein modifications in response to stress can be considered as a molecular tool to improve the resistance of plants to environmental stresses. These studies have provided new information about the significance of several gene and protein networks involved in the response of plants to salinity and drought, and the induction of tolerance. Moreover, identifying the crucial pathways which are involved in salinity and drought resistance can open doors for the establishment of commercial-resistant crop cultivars, and might be very useful in the next-generation crop breeding strategies to produce plants with salinity and drought-resistant traits.
期刊介绍:
BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.