{"title":"(0,1)-matrices and Discrepancy","authors":"LeRoy B. Beasley","doi":"10.13001/ela.2021.5033","DOIUrl":null,"url":null,"abstract":" Let $m$ and $n$ be positive integers, and let $R =(r_1, \\ldots, r_m)$ and $S =(s_1,\\ldots, s_n)$ be nonnegative integral vectors. Let $A(R,S)$ be the set of all $m \\times n$ $(0,1)$-matrices with row sum vector $R$ and column vector $S$. Let $R$ and $S$ be nonincreasing, and let $F(R)$ be the $m \\times n$ $(0,1)$-matrix where for each $i$, the $i^{th}$ row of $F(R,S)$ consists of $r_i$ 1's followed by $n-r_i$ 0's. Let $A\\in A(R,S)$. The discrepancy of A, $disc(A)$, is the number of positions in which $F(R)$ has a 1 and $A$ has a 0. In this paper, we investigate the possible discrepancy of $A^t$ versus the discrepancy of $A$. We show that if the discrepancy of $A$ is $\\ell$, then the discrepancy of the transpose of $A$ is at least $\\frac{\\ell}{2}$ and at most $2\\ell$. These bounds are tight.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.5033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $m$ and $n$ be positive integers, and let $R =(r_1, \ldots, r_m)$ and $S =(s_1,\ldots, s_n)$ be nonnegative integral vectors. Let $A(R,S)$ be the set of all $m \times n$ $(0,1)$-matrices with row sum vector $R$ and column vector $S$. Let $R$ and $S$ be nonincreasing, and let $F(R)$ be the $m \times n$ $(0,1)$-matrix where for each $i$, the $i^{th}$ row of $F(R,S)$ consists of $r_i$ 1's followed by $n-r_i$ 0's. Let $A\in A(R,S)$. The discrepancy of A, $disc(A)$, is the number of positions in which $F(R)$ has a 1 and $A$ has a 0. In this paper, we investigate the possible discrepancy of $A^t$ versus the discrepancy of $A$. We show that if the discrepancy of $A$ is $\ell$, then the discrepancy of the transpose of $A$ is at least $\frac{\ell}{2}$ and at most $2\ell$. These bounds are tight.