{"title":"In vivo assessment of salinity stress tolerance in transgenic Arabidopsis plants expressing Solanum tuberosum D200 gene","authors":"M. Gururani","doi":"10.32615/bp.2021.072","DOIUrl":null,"url":null,"abstract":"Transgenic Arabidopsis plants expressing a potato D200 gene encoding a hypothetical protein were subjected to salinity stress and assessed for their tolerance. The D200 Arabidopsis lines exhibited increased chlorophyll content, improved stomatal conductance, less electrolyte leakage, lower accumulation of malondialdehyde (MDA), and a higher amount of proline compared to the wild type (WT) plants under salinity stress. The gene expression analysis revealed that D200 plants accumulated a significantly higher amount of mRNA transcripts of genes encoding three major antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT), and superoxide dismutase (SOD). Chlorophyll a fluorescence kinetics analyses showed the D200 plants were more efficient in terms of primary photochemistry of photosystem II and performance indices. Furthermore, the quantum yields and efficiencies that represent the critical steps of photosynthetic light reactions were analyzed and it was found that D200 plants were photosynthetically more active than the WT plants under salt stress conditions. Overall, these findings suggest that the D200 gene is a potential candidate gene for developing stress-resilient crops in future.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/bp.2021.072","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Transgenic Arabidopsis plants expressing a potato D200 gene encoding a hypothetical protein were subjected to salinity stress and assessed for their tolerance. The D200 Arabidopsis lines exhibited increased chlorophyll content, improved stomatal conductance, less electrolyte leakage, lower accumulation of malondialdehyde (MDA), and a higher amount of proline compared to the wild type (WT) plants under salinity stress. The gene expression analysis revealed that D200 plants accumulated a significantly higher amount of mRNA transcripts of genes encoding three major antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT), and superoxide dismutase (SOD). Chlorophyll a fluorescence kinetics analyses showed the D200 plants were more efficient in terms of primary photochemistry of photosystem II and performance indices. Furthermore, the quantum yields and efficiencies that represent the critical steps of photosynthetic light reactions were analyzed and it was found that D200 plants were photosynthetically more active than the WT plants under salt stress conditions. Overall, these findings suggest that the D200 gene is a potential candidate gene for developing stress-resilient crops in future.
期刊介绍:
BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.