Efficient semiparametric copula estimation of regression models with endogeneity

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2021-08-14 DOI:10.1080/07474938.2021.1957284
Kien C. Tran, M. Tsionas
{"title":"Efficient semiparametric copula estimation of regression models with endogeneity","authors":"Kien C. Tran, M. Tsionas","doi":"10.1080/07474938.2021.1957284","DOIUrl":null,"url":null,"abstract":"Abstract An efficient sieve maximum likelihood estimation procedure for regression models with endogenous regressors using a copula-based approach is proposed. Specifically, the joint distribution of the endogenous regressor and the error term is characterized by a parametric copula function evaluated at the nonparametric marginal distributions. The asymptotic properties of the proposed estimator are derived, including semiparametrically efficient property. Monte Carlo simulations reveal that the proposed method performs well in finite samples comparing to other existing methods. An empirical application is presented to demonstrate the usefulness of the proposed approach.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"485 - 504"},"PeriodicalIF":0.8000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2021.1957284","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract An efficient sieve maximum likelihood estimation procedure for regression models with endogenous regressors using a copula-based approach is proposed. Specifically, the joint distribution of the endogenous regressor and the error term is characterized by a parametric copula function evaluated at the nonparametric marginal distributions. The asymptotic properties of the proposed estimator are derived, including semiparametrically efficient property. Monte Carlo simulations reveal that the proposed method performs well in finite samples comparing to other existing methods. An empirical application is presented to demonstrate the usefulness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内生性回归模型的有效半参数copula估计
摘要提出了一种基于copula的内生回归模型筛选极大似然估计方法。具体地说,内生回归量和误差项的联合分布由一个在非参数边缘分布处评估的参数耦合函数来表征。给出了该估计量的渐近性质,包括半参数有效性质。蒙特卡罗仿真结果表明,与现有方法相比,该方法在有限样本下具有良好的性能。一个实证应用被提出,以证明所提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1