{"title":"Proof That a Dominant Endmember Formula Can Always Be Written for a Mineral or a Crystal Structure","authors":"F. Hawthorne","doi":"10.3749/CANMIN.2000062","DOIUrl":null,"url":null,"abstract":"\n An endmember formula must be: (1) conformable with the crystal structure of the mineral, (2) electroneutral (i.e., not carry a net electric charge), and (3) irreducible [i.e., not capable of being factored into components that have the same bond topology (atomic arrangement) as that of the original formula]. The stoichiometry of an endmember formula must match the “stoichiometry” of the sites in the structure; for ease of expression, I denote such a formula here as a chemical endmember. In order for a chemical endmember to be a true endmember, the corresponding structure must obey the valence-sum rule of bond-valence theory. For most minerals, the chemical endmember and the (true) endmember are the same. However, where local order would lead to strong deviation from the valence-sum rule for some local arrangements, such arrangements cannot occur and the (true) endmember differs from the chemical endmember. I present heuristic and algebraic proofs that a specific chemical formula can always be represented by a corresponding dominant endmember formula. That dominant endmember may be derived by calculating the difference between the mineral formula considered and all of the possible endmember compositions; the endmember formula which is closest to the mineral formula considered is the dominant endmember.","PeriodicalId":9455,"journal":{"name":"Canadian Mineralogist","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mineralogist","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3749/CANMIN.2000062","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 5
Abstract
An endmember formula must be: (1) conformable with the crystal structure of the mineral, (2) electroneutral (i.e., not carry a net electric charge), and (3) irreducible [i.e., not capable of being factored into components that have the same bond topology (atomic arrangement) as that of the original formula]. The stoichiometry of an endmember formula must match the “stoichiometry” of the sites in the structure; for ease of expression, I denote such a formula here as a chemical endmember. In order for a chemical endmember to be a true endmember, the corresponding structure must obey the valence-sum rule of bond-valence theory. For most minerals, the chemical endmember and the (true) endmember are the same. However, where local order would lead to strong deviation from the valence-sum rule for some local arrangements, such arrangements cannot occur and the (true) endmember differs from the chemical endmember. I present heuristic and algebraic proofs that a specific chemical formula can always be represented by a corresponding dominant endmember formula. That dominant endmember may be derived by calculating the difference between the mineral formula considered and all of the possible endmember compositions; the endmember formula which is closest to the mineral formula considered is the dominant endmember.
期刊介绍:
Since 1962, The Canadian Mineralogist has published papers dealing with all aspects of mineralogy, crystallography, petrology, economic geology, geochemistry, and applied mineralogy.