Evaluation of corrosion resistance of powder coatings after various surface chemical pre-treatment

Q3 Materials Science Koroze a ochrana materialu Pub Date : 2017-04-01 DOI:10.1515/kom-2017-0008
D. Draganovská, J. Brezinová
{"title":"Evaluation of corrosion resistance of powder coatings after various surface chemical pre-treatment","authors":"D. Draganovská, J. Brezinová","doi":"10.1515/kom-2017-0008","DOIUrl":null,"url":null,"abstract":"Abstract The surface treatment by a powder coating is one of the progressive technologies. Such coatings are resistant to corrosion and mechanical wearing. The quality of surface protection is affected primarily by a layer pre-treatment, the type of surface tretment, the system selection and the method and quality of application. Taking into account all the surface pre-tretment methods, the chemical pre-modification is a leading method. One of the methods is pre-treatment using a conversion coating which was developed on the nanotechnology basis - BONDRITE NT. That non-phosphate chemical pre-treatment is utilized at a surrounding temperature. It creates nano-ceramic protective layer on steel, zinc and aluminium surfaces, and as the result the coating has a significant adhesion. In the paper, the possibilities for the improvement of corrosion resistance of powder coatings using the subject conversion coating are presented at the current pasivation of respective surface.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"61 1","pages":"80 - 85"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/kom-2017-0008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Koroze a ochrana materialu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/kom-2017-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The surface treatment by a powder coating is one of the progressive technologies. Such coatings are resistant to corrosion and mechanical wearing. The quality of surface protection is affected primarily by a layer pre-treatment, the type of surface tretment, the system selection and the method and quality of application. Taking into account all the surface pre-tretment methods, the chemical pre-modification is a leading method. One of the methods is pre-treatment using a conversion coating which was developed on the nanotechnology basis - BONDRITE NT. That non-phosphate chemical pre-treatment is utilized at a surrounding temperature. It creates nano-ceramic protective layer on steel, zinc and aluminium surfaces, and as the result the coating has a significant adhesion. In the paper, the possibilities for the improvement of corrosion resistance of powder coatings using the subject conversion coating are presented at the current pasivation of respective surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粉末涂层在各种表面化学预处理后的耐腐蚀性评价
摘要粉末涂层表面处理是一种进步的技术。这种涂层耐腐蚀和机械磨损。表面保护的质量主要受层预处理、表面处理类型、系统选择以及应用方法和质量的影响。考虑到所有的表面预处理方法,化学预改性是一种领先的方法。其中一种方法是使用基于纳米技术开发的转化涂层BONDRITE NT进行预处理。这种非磷酸盐化学预处理是在周围温度下进行的。它在钢、锌和铝表面形成了纳米陶瓷保护层,因此涂层具有显著的附着力。本文介绍了在各个表面的电流分布下,使用该转化涂层提高粉末涂层耐腐蚀性的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Koroze a ochrana materialu
Koroze a ochrana materialu Materials Science-Materials Science (all)
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
14 weeks
期刊最新文献
Indoor corrosivity classification based on lead coupons Protective ability of lead corrosion products in indoor atmosphere with acetic acid vapours Anchorage length of patented wire cables in prestressed bridge girders Monitoring of the atmospheric corrosivity by resistive sensors Mitigation of chloride induced corrosion in reinforced concrete structures and its modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1