Lore Zumeta-Olaskoaga, Maximilian Weigert, Jon Larruskain, Eder Bikandi, Igor Setuain, Josean Lekue, Helmut Küchenhoff, Dae-Jin Lee
{"title":"Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models","authors":"Lore Zumeta-Olaskoaga, Maximilian Weigert, Jon Larruskain, Eder Bikandi, Igor Setuain, Josean Lekue, Helmut Küchenhoff, Dae-Jin Lee","doi":"10.1007/s10182-021-00428-2","DOIUrl":null,"url":null,"abstract":"<div><p>Data-based methods and statistical models are given special attention to the study of sports injuries to gain in-depth understanding of its risk factors and mechanisms. The objective of this work is to evaluate the use of shared frailty Cox models for the prediction of occurring sports injuries, and to compare their performance with different sets of variables selected by several regularized variable selection approaches. The study is motivated by specific characteristics commonly found for sports injury data, that usually include reduced sample size and even fewer number of injuries, coupled with a large number of potentially influential variables. Hence, we conduct a simulation study to address these statistical challenges and to explore regularized Cox model strategies together with shared frailty models in different controlled situations. We show that predictive performance greatly improves as more player observations are available. Methods that result in sparse models and favour interpretability, e.g. Best Subset Selection and Boosting, are preferred when the sample size is small. We include a real case study of injuries of female football players of a Spanish football club.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-021-00428-2.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-021-00428-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Data-based methods and statistical models are given special attention to the study of sports injuries to gain in-depth understanding of its risk factors and mechanisms. The objective of this work is to evaluate the use of shared frailty Cox models for the prediction of occurring sports injuries, and to compare their performance with different sets of variables selected by several regularized variable selection approaches. The study is motivated by specific characteristics commonly found for sports injury data, that usually include reduced sample size and even fewer number of injuries, coupled with a large number of potentially influential variables. Hence, we conduct a simulation study to address these statistical challenges and to explore regularized Cox model strategies together with shared frailty models in different controlled situations. We show that predictive performance greatly improves as more player observations are available. Methods that result in sparse models and favour interpretability, e.g. Best Subset Selection and Boosting, are preferred when the sample size is small. We include a real case study of injuries of female football players of a Spanish football club.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.