A hybrid adaptive unscented Kalman filter algorithm

Jun He, Qinhua Zhang, Qingyang Hu, Guouxi Sun
{"title":"A hybrid adaptive unscented Kalman filter algorithm","authors":"Jun He, Qinhua Zhang, Qingyang Hu, Guouxi Sun","doi":"10.20944/PREPRINTS201703.0127.V1","DOIUrl":null,"url":null,"abstract":"In order to overcome the limitation of the traditional adaptive Unscented Kalman Filtering (UKF) algorithm in noise covariance estimation for state and measurement, we propose a hybrid adaptive UKF algorithm based on combining Maximum a posteriori (MAP) criterion and Maximum likelihood (ML) criterion, in this paper. First, to prevent the actual noise covariance deviating from the true value which can lead to the state estimation error and arouse the filtering divergence, a real-time covariance matrices estimation algorithm based on hybrid MAP and ML is proposed for obtaining the statement and measurement noises covariance, respectively; and then, a balance equation the two kinds of covariance matrix is structured in this proposed to minimize the statement estimation error. Compared with the UKF based MAP and based ML, the proposed algorithm provides better convergence and stability.","PeriodicalId":35748,"journal":{"name":"International Journal for Engineering Modelling","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Engineering Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/PREPRINTS201703.0127.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

Abstract

In order to overcome the limitation of the traditional adaptive Unscented Kalman Filtering (UKF) algorithm in noise covariance estimation for state and measurement, we propose a hybrid adaptive UKF algorithm based on combining Maximum a posteriori (MAP) criterion and Maximum likelihood (ML) criterion, in this paper. First, to prevent the actual noise covariance deviating from the true value which can lead to the state estimation error and arouse the filtering divergence, a real-time covariance matrices estimation algorithm based on hybrid MAP and ML is proposed for obtaining the statement and measurement noises covariance, respectively; and then, a balance equation the two kinds of covariance matrix is structured in this proposed to minimize the statement estimation error. Compared with the UKF based MAP and based ML, the proposed algorithm provides better convergence and stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种混合自适应无迹卡尔曼滤波算法
为了克服传统自适应Unscented卡尔曼滤波(UKF)算法在状态和测量噪声协方差估计方面的局限性,提出了一种基于最大后验(MAP)准则和最大似然(ML)准则的混合自适应UKF算法。首先,为了防止实际噪声协方差偏离真实值导致状态估计误差和引起滤波发散,提出了一种基于混合MAP和ML的实时协方差矩阵估计算法,分别获取语句噪声和测量噪声协方差;然后,构造了两种协方差矩阵的平衡方程,使语句估计误差最小化。与基于UKF的MAP和基于ML的算法相比,该算法具有更好的收敛性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal for Engineering Modelling
International Journal for Engineering Modelling Engineering-Mechanical Engineering
CiteScore
0.90
自引率
0.00%
发文量
12
期刊介绍: Engineering Modelling is a refereed international journal providing an up-to-date reference for the engineers and researchers engaged in computer aided analysis, design and research in the fields of computational mechanics, numerical methods, software develop-ment and engineering modelling.
期刊最新文献
Modelling a Contention-Based Wireless MAC Protocol with EDCA Countdown and Constrained Priority Freezing Analysis of Stress Intensity Factor in a Cracked Plate Vibratory Conveying by Normal Oscillations with Piecewise Constant Acceleration and Longitudinal Harmonic Oscillations Performance of Multiscale Hydrodynamic Step Bearing with Inhomogeneous Surfaces Pre-modeling by Arc Hydro Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1